Article contents
Dynamic Failure Mechanisms in Beryllium-Bearing Bulk Metallic Glasses
Published online by Cambridge University Press: 10 February 2011
Abstract
The understanding of dynamic failure mechanisms in bulk metallic glasses is important for the application of this class of materials to a variety of engineering problems. This is true not only for design environments in which components are subject to high loading rates, but also when components are subjected to quasi-static loading conditions where observations have been made of damage propagation occurring in an unstable, highly dynamic manner. This paper presents preliminary results of a study of the phenomena of dynamic crack initiation and growth as well as the phenomenon of dynamic localization (shear band formation) in a beryllium-bearing bulk metallic glass, Zr41.25Ti13.75Ni10Cu12.75Be22.5. Pre-notched and prefatigued plate specimens were subjected to quasi-static and dynamic three-point bend loading to investigate crack initiation and propagation. Asymmetric impact loading with a gas gun was used to induce dynamic shear band growth. The mechanical fields in the vicinity of the dynamically loaded crack or notch tip were characterized using high-speed optical diagnostic techniques. The results demonstrated a dramatic increase in the crack initiation toughness with loading rate and subsequent crack tip speeds approaching 1000 m s−1. Dynamic crack tip branching was also observed under certain conditions. Shear bands formed readily under asymmetric impact loading. The shear bands traveled at speeds of approximately 1300 m s−1 and were accompanied by intense localized heating measured using high-speed full-field infrared imaging. The maximum temperatures recorded across the shear bands were in excess of 1500 K.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1999
References
- 14
- Cited by