Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T15:25:43.980Z Has data issue: false hasContentIssue false

Dynamic Aspects of Frenkel Defect Formation in Silver Chloride and Silver Bromide

Published online by Cambridge University Press:  10 February 2011

D. Wilmer
Affiliation:
Institut für Physikalische Chemie, Schloßplatz 4/7, D-48149 Münster, Germany
K. Funke
Affiliation:
Institut für Physikalische Chemie, Schloßplatz 4/7, D-48149 Münster, Germany
T. Lauxtermann
Affiliation:
Institut für Physikalische Chemie, Schloßplatz 4/7, D-48149 Münster, Germany
S. M. Bennington
Affiliation:
Rutherford Appleton Laboratory, Chilton, Oxfordshire, OXll 0QX, U.K.
Get access

Abstract

Complete ionic conductivity spectra have been taken of solid silver chloride and silver bromide at various temperatures. The spectra contain two new dynamic features: i) a thermally activated Debye-type relaxation which is explained by the frequent hopping of silver ions from their regular lattice sites to adjacent interstial sites and back again, and ii) conductivity maxima at about 500 GHz which are attributed to high-amplitude individual vibrational motions, mostly of the silver ions. – We also report results of a neutron scattering study on silver bromide. These contain thermally activated quasielastic contributions caused by the localized cation back-and-forth hopping and also give evidence of fast correlated movements of neighboring ions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Friauf, R.J., in The Physics of Latent Image Formation in Silver Halides, edited by Balderschi, A., Czaja, W., Tosatti, E., Tosi, M. (World Scientific, Singapore, 1984), p. 79.Google Scholar
[2] Koch, E., Wagner, C., Z. Phys. Chem. B 38, 295 (1937).Google Scholar
[3] Teltow, J., Ann. Physik 5, 63 (1949).Google Scholar
[4] Aghdaie, B., Friauf, R.J., Bull. Am. Phys. Soc. 33, 333 (1988).Google Scholar
[5] Aboagye, K., Friauf, R.J., Phys. Rev. B11, 1654 (1975).Google Scholar
[6] Corish, J., Jacobs, P.W.M., Phys. Stat. Sol. B67, 263 (1975).Google Scholar
[7] Corish, J., Mulcahy, D.C.A., J. Phys. C: Solid St. Phys. 13, 6459 (1980).Google Scholar
[8] Jacobs, P.W.M., Corish, J., Devlin, B.A., Catlow, C.R.A., in Fast Ion Transport in Solids, edited by Vashishta, P., Mundy, J.N., Shenoy, G.K. (Elsevier North Holland, New York, 1979), p. 589.Google Scholar
[9] Funke, K., Hermeling, J., Kümpers, J., Z. Naturforsch. 43a, 10941102 (1988).Google Scholar
[10] Funke, K., Kantimm, T., Zurwellen, D., Ber. Bunsenges. Phys. Chem. 93, 1331 (1989).Google Scholar
[11] Hoppe, R., Kloidt, T., Funke, K., Ber. Bunsenges. Phys. Chem. 95, 1025 (1991).Google Scholar
[12] Funke, K., Lauxtermann, T., Wilmer, D., Bennington, S.M., Z. Naturforsch. 50a, 509520(1995).Google Scholar