Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T06:30:42.587Z Has data issue: false hasContentIssue false

Ductile Phase Toughening of MoSi2: Effect of Reinforcement Morphology

Published online by Cambridge University Press:  15 February 2011

Long-Ching Chen
Affiliation:
The Ohio State University, Department of Materials Science and Engineering, Columbus, OH 443210-1179
Nedhal Bahtishi
Affiliation:
The Ohio State University, Department of Materials Science and Engineering, Columbus, OH 443210-1179
Richard Lederich
Affiliation:
McDonnell Douglas Corporation, St. Louis, MO 63166-0516
Wolé Soboyejo
Affiliation:
The Ohio State University, Department of Materials Science and Engineering, Columbus, OH 443210-1179
Get access

Abstract

The effects of ductile reinforcement morphology on the mechanical behavior of MoSi2 reinforced with 20 vol.% Nb are presented. While all the composites exhibit improved fracture toughness relative to the monolithic MoSi2, the most significant improvement is obtained in the composite with laminate reinforcement, followed by coarse fiber, fine fiber and particulate reinforcements. Bend strength measurements indicate a ductile-brittle-transition-temperature of ∼1250°C, and highlight the attractive properties of laminate reinforced composite. Preliminary studies of room temperature fatigue crack growth in particulate reinforced composites show a stable fatigue crack growth, which is not achieved in monolithic MoSi2. Possible ways of achieving a better combination of mechanical properties are also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Vasudévan, A.K. and Petrovic, J.J., Mater. Sci. Eng., A155, 1 (1992).Google Scholar
2. Fitzer, E. and Remmele, W., Proc. 5th Int. Conf. on Composite Materials. ICCM-V, edited by Harrigan, W.C. Jr., Strife, J. and Dhingra, A.K. (AIMIE, Warrendale, PA, 1985), p.515.Google Scholar
3. Meschter, P.J. and Schwartz, D.S., J. Met., 41, 52 (1989).Google Scholar
4. Maloy, S., Heuer, A. H., Lewandowski, J., and Petrovic, J., J. Am. Ceram. Soc., 74, 2704 (1991).Google Scholar
5. Petrovic, J.J. and Honnell, R.E., Ceram. Eng. Sci. Proc., 11, 734 (1990).Google Scholar
6. Carter, D.H., Petrovic, J.J., Honnell, R.E. and Gibbs, W.S., Ceram. Eng. Sci. Proc., 10, 1121, (1989).Google Scholar
7. Ramamurty, U., Kim, A.S., Suresh, S. and Petrovic, J.J., J. Am. Ceram. Soc., 76, 1953 (1993).Google Scholar
8. Zakharova, G.I., Ordanyan, S.S., Paderno, V.N., Smolina, G.N. and Vinogradova, E.S., Izvest. Akad. Nauk. SSSR, Neorg. Mater., 20, 1143 (1984).Google Scholar
9. Petrovic, J.J, Honnell, R.E. and Mitchell, T.E., Ceram. Eng. Sci. Proc., 12, 1633 (1991).Google Scholar
10. Petrovic, J.J. and Honnell, R.E., J. Mater. Sci., 25, 4453 (1990).Google Scholar
11. Brooks, D., Chen, L.-C., Lederich, R. and Soboyejo, W., submitted to J. Am. Ceram. Soc. (1994).Google Scholar
12. Soboyejo, W.O., Venkateswara Rao, K.T., Sastry, S.M.L. and Ritchie, R.O., Metall. Trans., 24A, 585 (1993).Google Scholar
13. Venkateswara Rao, K.T., Soboyejo, W.O., and Ritchie, R.O., Metall. Trans., 23A, 2249 (1992).Google Scholar
14. Lu, T.C., Evans, A.G., Hecht, R.J. and Mehrabian, R., Acta Metall. Mater., 39, 1853 (1991).Google Scholar
15. Shaw, L. and Abbaschian, R., Acta Metall. Mater., 42, 213 (1994).Google Scholar
16. Kajuch, J., Rigney, J.D. and Lewandowski, J.J., Mat. Sci. Eng., A155, 59 (1992).Google Scholar
17. Mendiratta, M.G., Lewandowski, J.J. and Dimiduk, D.M., Metall. Trans., 22A, 1573 (1991).Google Scholar
18. Dève, F., Evans, A.G., Odette, G.R., Mehrabian, R., Emiliani, M.L. and Hecht, R.J., Acta Metall., 38, 1491 (1990).Google Scholar