Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T17:27:54.748Z Has data issue: false hasContentIssue false

Dual-Beam Photocurrent Spectra in Undoped a-Si:H

Published online by Cambridge University Press:  01 January 1993

J.Z Liu
Affiliation:
NEC Research Institute, 4 Independence Way, Princeton, NJ 08540,
G. Lewen
Affiliation:
NEC Research Institute, 4 Independence Way, Princeton, NJ 08540,
J.P. Conde*
Affiliation:
NEC Research Institute, 4 Independence Way, Princeton, NJ 08540,
P. Rocai Cabarrocas
Affiliation:
LPICM, Ecole Polytechnique, 91128 Palaiseau Cedex, France
*
§ On leave from Instituto Superior Tecnico, 1096 Lisboa Codex - Portugal.
Get access

Abstract

It is shown that the anomalous band in dual-beam CPM (DBCPM) spectra results from a combination of two processes: photocurrent enhancement due to excitations by the probe light from the valence baud to theD+ defect states, and photocurrent reduction due to excitations by the probe light from the D° defect states to the conduction band. From the DBCPM spectra, the electron correlation energy for the (filled)D - defects is determined to be 0.25 eV.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Kocka, J., Vanecek, M., and Triska, A., in Amorphous Silicon and Related Materials, ed. by Fritzsche, H. (World Scientific, Singapore, 1988) p. 297, and references therein.Google Scholar
[2] Wronski, C.R., Abeles, B., Tiedje, T., and Cody, G.D., Solid State Comm. 44, 1423 (1982).Google Scholar
[3] Lee, S., Kumar, S., and Wronski, C.R., J. Non-Crystal. Solids 114, 316 (1989).Google Scholar
[4] Persans, P.D., Phil. Mag. B 46, 435 (1982).Google Scholar
[5] Aljishi, S., Ley, L., Chu, V., Tanaka, S., Smith, Z E., and Wagner, S., Proc. 19th Int. Conf. Phys. Semicon., ed. by Zawadzki, W. (Inst, of Phys., Wasaw, 1988), p. 1637.Google Scholar
[6] Liu, J.Z., Conde, J.P., Lewen, CI., and Cabarrocas, P. Roca i, Amorphous Silicon Technology-1992, MRS Symp. Proc. Vol. 258, ed. by Thompson, M.J., Hamakawa, Y., LeComber, P.G., Madan, A., Schiff, E. (MRS, Pittsburgh, 1992), p. 795.Google Scholar
[7] Cabarrocas, P. Roca i, Chevrier, J.B., Hue, J., Lloret, A., Parey, J.Y., and Schmitt, J.P.M., J. Vac. Sci. Technol. A 9, 2331 (1991).Google Scholar
[8] Wronski, C. R., Lee, S., Hicks, M., and Kumar, S., Phys. Rev. Lett. 63, 1420 (1989).Google Scholar
[9] Jackson, W.B., Kelso, S.M., Tsai, C.C., Allen, J.W., and Oh, S.-J., Phys. Rev. B 31, 5187 (1985).Google Scholar
[10] Curtins, H. and Favre, M., in Amorphous Silicon and Related Materials, ed. by Fritzsche, H. (World Scientific, Singapore, 1988), p. 329.Google Scholar
[11] Park, H., Liu, J.Z., and Wagner, S., Appl. Phys. Lett. 55, 2638 (1989).Google Scholar
[12] Stutzmann, M., Nunnenkamp, J., Brandt, M.S., and Asano, A., Phys. Rev. Lett. 67, 2347 (1991).Google Scholar
[13] Rose, A., Concepts in Photoconductivity and Allied Problems (R. Krieger Publishing, Huntington, 1978), §3.10.Google Scholar
[14] Street, R.A., Hydrogenated Amorphous Silicon (Cambridge University, Cambridge, 1991), Chapter 8.Google Scholar
[15] Fuhs, W., J. Non-Crystal. Solids 77 & 78, 583 (1985).Google Scholar
[16] Morigaki, K., J. Non-Crystal. Solids 77 & 78, 592 (1985).Google Scholar
[17] McMahon, T.J. and Crandall, R., Phys. Rev. B 39, 1766 (1989).Google Scholar
[18] Simmons, J.G. and Taylor, G.W., Phys. Rev. B 4, 502 (1971).Google Scholar
[19]The specified uncertainty includes only the uncertainty for fitting the specified func¬tion to the data. That is, it does not includes the error of the data.Google Scholar