Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-20T03:51:43.777Z Has data issue: false hasContentIssue false

Drying Behavior of Sol-Gel Derived A12O3 and Al2O3-Sic Composites

Published online by Cambridge University Press:  28 February 2011

R. H. Krabill
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611
D. E. Clark
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611
Get access

Abstract

Gel drying is a critical step in the sol-gel synthesis of Al2O3 and Al2O3-SiC composites. Problems exist during the drying stage that affect the monolithic properties of the sintered products. Classical drying theory was applied to the drying behavior of Al2O3 and Al2O3-SiC composites in an effort to optimize the drying process and understand the controlling mechanisms.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Becher, P. F. and Wei, G. C., presentation at the 21st Automotive Technology Development Contract's Coordinators Meeting, Dearborn, Mich., Nov. 14–17, 1983.Google Scholar
2. Lannutti, J. J. and Clark, D. E., Better Ceramics Through Chemistry, Brinker, C. J., Clark, D. E. and Ulrich, D. R., eds. (Elsevier Science Publishing Co. 1984), p. 369.Google Scholar
3. Lannutti, J. J. and Clark, D. E., Better Ceramics Through Chemistry, Brinker, C. J., Clark, D. E. and Ulrich, D. R., eds. (Elsevier Science Publishing Co. 1984), p. 375.Google Scholar
4. La Torre, G. P., Stokell, R. A., Krabill, R. H. and Clark, D. E., in proceedings, 10th Annual Conference on Composites and Advanced Ceramic Materials, Cocoa Beach, Fla., 1986.Google Scholar
5. Yoldas., B. E., Amer. Ceram. Soc. Bull. 54 (1975) 289; 54 (1975) 286.Google Scholar
6. Shoup, R. D., Colloid and Interfacial Science, Vol.3 (Academic Press, New York, 1976) p. 63.Google Scholar
7. Wallace, S. and Hench, L. L., in Better Ceramics Through Chemistry, Brinker, C. J., Clark, D. E. and Ulrich, D. R., eds., J. Wiley & Sons, 1984, p. 47.Google Scholar
8. Yamane, M. et al., J. Mater. Sci. 13 (1978) 865.Google Scholar
9. Nogami, M. and Morya, Y., J. Non-Cryst. Solids 37 (1980)191.Google Scholar
10. Klein, L. C. and Garvey, G. J., J. Non-Cryst. Solids 48 (1982)97.Google Scholar
11. Zarzycki, J. et al., J. Mater. Sci. 17 (1982) 3371.Google Scholar
12. Gurkovich, S. R. and Blum, J. B., in: Ultrastructure Processing of Ceramics, Glasses and Composites, Hench, L. L. and Ulrich, D. R., eds., John Wiley & Sons, 1984.Google Scholar
13. Kawaguchi, T. et al., J. Non-Cryst. Solids 63 (1984)61.Google Scholar
14. Sherwood, T. K., Ind. Eng. Chem. 21 (1929) 12; 21 (1929) 976; 24 (1932) 307.Google Scholar
15. Comings, E. W. and Sherwood, T. K., Ind. Eng. Chem. 26 (1934)1096.Google Scholar
16. Sherwood, T. K. and Comings, E. W., Ind. Eng. Chem 25 (1933)311.Google Scholar