Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-05T13:28:13.518Z Has data issue: false hasContentIssue false

Dry Etching to form Submicron Features in CMR Oxides: (Pr,Ba,Ca)MnO3 and (La,Sr)MnO3

Published online by Cambridge University Press:  10 February 2011

K. P. Lee
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville FL 32611
K. B. Jung
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville FL 32611
H. Cho
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville FL 32611
D. Kumar
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville FL 32611
S. V. Pietambaram
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville FL 32611
R. K. Singh
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville FL 32611
P. H. Hogan
Affiliation:
Center for Materials Research and Technology, MARTECH, Florida State University, Tallahassee FL 32306
K. H. Dahmen
Affiliation:
Center for Materials Research and Technology, MARTECH, Florida State University, Tallahassee FL 32306
Y. B. Hahn
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville FL 32611
S. J. Pearton
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville FL 32611
Get access

Abstract

Effective pattern transfer into (Pr,Ba,Ca)MnO3 and (La,Sr)MnO3 has been achieved using Cl2/Ar discharges operated under Inductively Coupled Plasma conditions. Etch rates up to 900 Å-min−1 for (La,Sr)MnO3 and 300 Å-min−1 for (Pr,Ba,Ca)MnO3 were obtained, with these rates being a strong function of ion flux, ion energy and ion-to-neutral ratio. The etching is still physically-dominated under all conditions, leading to significant surface smoothing on initially rough samples. Sub-micron (0.35 μm) features have been produced in both materials using SiNx as the mask.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Searle, C.W. and Wang, S.T., Can. J. Phys. 47 2703 (1969).10.1139/p69-329Google Scholar
2. See for example, Sun, J.Z., Krusin, L.-Elbaum, Gupta, A., Xiao, G., Duncombe, P.R. and Parkin, S.S.P., IBM J. Res. Develop. 42 89 (1998), and reference therein.10.1147/rd.421.0089Google Scholar
3. von, R. Helmaoelt, Wecher, J., Holzapfel, B., Schultz, L. and Samwer, K., Phys.Rev. Lett. 71 2331(1993).Google Scholar
4. Tin, S., Tiefel, T.H., McCormack, M., Fastnacht, R.A., Ramesh, R. and Chen, L.H., Science 264 413 (1994).Google Scholar
5. Mc, M. Cormack, Jin, S., Tiefel, T.H., Fleming, R.H., Philips, J.M. and Ramesh, R., Appl.Phys.Lett. 64 3045 (1995).Google Scholar
6. Jin, S., Bryan, M.O., Tiefel, T.H., Mc, M. Cormack and Rhodes, W.W., Appl.Phys.Lett. 66 382 (1995).10.1063/1.114220Google Scholar
7. Sun, J.Z., Krusin, L.-Elbaum, S.S.P Parkin and Xiao, G., Appl.Phys.Lett.. 67 2726 (1995). M.F. Hundley, R.H. Heffner, Q.X. Jia, J.J. Neumeier, J. Tesmer, J.D. Thompson and X.D. Wu, Appl.Phys.Lett. 67 860 (1995).10.1063/1.114306Google Scholar
9. Hundley, M.F., Neumeier, J.J., Heffner, R.H., Jin, Q.X., Wu, X.D. and Thompson, J.D., J. Apply. Phys. 79 4535 (1996).10.1063/1.361715Google Scholar
10. Tokura, Y., Urushibara, A., Moritomo, Y., Arima, T., Asamitsvu, A., Kido, G. and Furukawa, N., J. Phys. Soc. Jap. 63 3931 (1991).Google Scholar
11. Chahara, K., Ohno, T., Kasai, M. and Kozono, Y., Appl. Phys. Lett. 63 990 (1993).10.1063/1.110624Google Scholar
12. Kumar, D., Kalyanaram, R., Narayan, J. and Christen, D.K., Mat. Res. Soc. Symp. 397 241 (1996).Google Scholar
13. Ju, H.L., Kwon, C., Li, Q., Greene, R.L. and Venkatesan, T., 65 2108 (1994).10.1063/1.112808Google Scholar
14. Pietambaram, S.V., Kumar, D., Singh, R.K. and Lee, C.B., Phys. Rev. 58 12277 (1998).10.1103/PhysRevB.58.8182Google Scholar
15. Xiong, C.C., Li, Q., Ju, H.H., Mao, S.N., Senapati, L., Xi, X.X., Greene, R.L. and Venkatesan, T., Appl. Phys. Lett. 66 1427 (1995).10.1063/1.113267Google Scholar
16. Raveau, B., Maignan, A. and Caignaert, V., J. Solid State Chem. 117 424 (1995).10.1006/jssc.1995.1297Google Scholar
17. Kumar, D., Singh, R.K. and Lee, C.B., Phys. Rev. B 56 13666 (1997).10.1103/PhysRevB.56.13666Google Scholar
18. Kusters, R.M., Singleton, J., Keen, D.A., Mc, R. Greevy and Hayes, W., Phys. Rev. B155 362 (1989).Google Scholar
19. Sun, J.Z., Gallagher, W.J., Duncombe, P.R., Krusin-Elbaum, L., Altman, R.A., Gupta, A., Lu, Y., Gong, G.Q. and Xiao, G., Appl. Phys. Lett. 69 3266 (1996).10.1063/1.118031Google Scholar
20. Jung, K.B., Lambers, E.S., Childess, J.R., Pearton, S.J., Jenson, M. and Hurst, A.T., Appl. Phys. Lett. 71 1255 (1997).10.1063/1.119925Google Scholar
21. Jung, K.B., Lambers, E.S., Childess, J.R., Pearton, S., Jenson, M. and Hurst, A.T., J. Vac. Sci. Technol. A16 1697 (1998).10.1116/1.581287Google Scholar
22. Wang, J.J., Childress, J.R., Pearton, S.J., Sharifi, F., Dahmen, K.H., Gillman, E.S., Cadieu, F.J., Rani, R., Qian, X.R. and Chen, Li, J. Electrochem. Soc. 145 2512 (1998).10.1149/1.1838670Google Scholar