Article contents
Droplet Behaviour in Inkjet Printing
Published online by Cambridge University Press: 01 February 2011
Abstract
The interaction of an inkjet printed droplet with a substrate is of importance when determining the final size and shape of deposits. A simple model is proposed that relates droplet diameter, printed dot pitch and equilibrium contact angle to as-printed track width. Reasonable agreement was found between the model and final track width, with slight over-prediction accounted for by removal of the organic component of the ink during heat treatment. Immediately after droplet impact, the drop may spread to a considerably greater extent than predicted by equilibrium because of the kinetic energy of the droplet in flight. Simulations of droplet impact showed that the maximum droplet spread decreased linearly with equilibrium contact angle. Recoil of these droplets towards their equilibrium shape occurred above a threshold contact angle. This threshold was greater than expected, suggesting an energy barrier preventing recoil or the kinetics of recoil being too slow for recoil to occur within the timeframe of this study.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2005
References
REFERENCES
- 1
- Cited by