Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T15:52:36.949Z Has data issue: false hasContentIssue false

Drop-by-drop Polymer Deposition by Acoustic Picoliter Droplet Generators for Applications in Semiconductor Industry and Biotechnology

Published online by Cambridge University Press:  01 February 2011

Grace C. Lee
Affiliation:
Demirci Bio-Acoustic MEMS Lab, Health Sciences and Technology, 65 Landsdowne Street, Cambridge, MA, 02139, United States
Jeremiah R Cohen
Affiliation:
[email protected], Massachusetts Institute of Technology, Harvard-MIT Division of Health Sciences and Technology, Bio-Acoustic-MEMS, Cambridge, MA, 02139, United States
Utkan Demirci
Affiliation:
[email protected], Massachusetts Institute of Technology, Harvard-MIT Division of Health Sciences and Technology, Bio-Acoustic-MEMS, Cambridge, MA, 02139, United States
Get access

Abstract

Photoresist droplets are ejected onto a wafer surface by an acoustic two dimensional micromachined ejector array. The spread of single droplets on a silicon wafer surface at varying droplet speeds is studied. Series of photoresist droplets are printed periodically drop-on-demand on a silicon wafer surface and profiles of a single droplet and two droplets overlapping with varying distances of 25 μm and 1 μm on a silicon wafer are demonstrated. Moreover, 3.4 μm thick spinless full coverage of a 4 inch wafer with photoresist is demonstrated which indicates a potential for coating wafers in less than a few seconds.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Roth, C.M. and Yarmush, M.L., Ann. Rev. Biomed. Eng. 1, 265297 (1999).Google Scholar
2. Revzin, A., Sekine, K., Sin, A., Tompkins, R.G., Toner, M., Lab on Chip. 5(1), 3037 (2005).Google Scholar
3. Demirci, U. and Toner, M., App. Phys. Lett. 88 (5), 053117 (2006).Google Scholar
4. Percin, G., Lundgren, T.S., and Khuri-Yakub, B.T., App. Phy. Lett. 73(16), 23752377 (1998).Google Scholar
5. Lemmo, A.V., Fisher, J.T., Geysen, H.M., and Rose, D.J., Anal. Chem. 69, 543551 (1997).Google Scholar
6. Peurrung, L.M. and Graves, D. B., IEEE Trans. on Sem. Man. 6(1), 7276 (1993).Google Scholar
7. Hebner, T. R., Wu, C. C., Marcy, D., Lu, M.H., and Strum, J. C., App. Phys. Lett. 72 (5), 519521 (1998).Google Scholar
8. Percin, G. and Khuri-Yakub, B. T., IEEE Trans. on Semiconductor Man. 16(3), 452459 (2003).Google Scholar
9. Demirci, U., Yaralioglu, G. G., Hæggström, E., Percin, G., Ergun, S. A., Khuri-Yakub, B. T., IEEE Trans. on Semiconductor Man. 17 (4), 517524 (2004).Google Scholar
10. Plummer, J. D., Deal, M. D. and Griffin, P. B., Silicon VLSI Technology – Fundamentals, Practice and Models (Prentice Hall, 1999).Google Scholar
11. Demirci, U., Yaralioglu, G. G., Hæggström, E., and Khuri-Yakub, B. T., IEEE Trans. on Semiconductor Man. 18(4), 709715 (2005).Google Scholar
12. Demirci, U., Rev. Sci. Instrum. 76 (6), 065103 (2005).Google Scholar
13. Auld, B.A., Acoustic fields and waves in solids (Krieger Publishing Company, Florida, 1990).Google Scholar
14. Elrod, S.A., Hadimioglu, B., Khuri-Yakub, B. T., Rawson, E.G., Richley, E., Quate, C.F., J. of Appl. Phys. 65(9), 3441 (1989).Google Scholar
15. Elrod, S.A., Khuri-Yakub, B.T., and Quate, C.F., U.S. Patent No. 5 194 880 (21 Dec 1990).Google Scholar
16. Elrod, S.A., Khuri-Yakub, B.T., and Quate, C.F., U.S. Patent No. 4 751 530 (19 Dec 1986).Google Scholar
17. Roisman, I.V., Rioboo, R., and Tropea, C., J. of Fluid Mech. 472, 373397 (2002).Google Scholar
18. Mundo, C. H. R., Sommerfeld, M., and Tropea, C., Int. J. Multiphase Flow 21, 151173 (1995).Google Scholar