Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T02:14:51.968Z Has data issue: false hasContentIssue false

Drawing of Hollow Multilayered All-Polymer Fibers

Published online by Cambridge University Press:  01 February 2011

Elio Pone
Affiliation:
[email protected]École Polytechnique de MontréalMontréal Québec H3C 3A7Canada
Charles Dubois
Affiliation:
[email protected], École Polytechnique de Montréal, Montréal, Québec, H3C 3A7, Canada
Ning Guo
Affiliation:
[email protected], École Polytechnique de Montréal, Montréal, Québec, H3C 3A7, Canada
Yan Gao
Affiliation:
[email protected], École Polytechnique de Montréal, Montréal, Québec, H3C 3A7, Canada
Alexandre Dupuis
Affiliation:
[email protected], École Polytechnique de Montréal, Montréal, Québec, H3C 3A7, Canada
Suzanne Lacroix
Affiliation:
[email protected], École Polytechnique de Montréal, Montréal, Québec, H3C 3A7, Canada
Maksim Skorobogatiy
Affiliation:
[email protected], École Polytechnique de Montréal, Montréal, Québec, H3C 3A7, Canada
Get access

Abstract

We present a fluid dynamics model for the drawing of hollow multilayer polymer optical fiber. A newtonian model is considered assuming slender geometries. Hollow core collapse during drawing and layer thickness non-uniformity are investigated as a function of draw temperature, draw ratio, feeding speed, core pressurization and mismatch of material properties in a multilayer.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Katsuyama, T. and Matsumura, H., Infrared Optical Fibers, 1989.Google Scholar
2. Saito, M. and Kikuchi, K., “Infrared optical fiber sensors,“ Opt. Rev. 4, 527538 (1997)Google Scholar
3. Sanghera, J. and Aggarwal, I., Infrared Fiber Optics, 1998.Google Scholar
4. Martellucci, S. et al., “Optical Sensors and Microsystems: New Concepts, Materials, Technologies” Plenum 2000 Google Scholar
5. Harrington, J.A., “A review of IR transmitting, hollow waveguides,” Fib. Integr. Opt. 19, 211 (2000)Google Scholar
6. Shi, YW, Ito, K., Matsuura, Y., Miyagi, M., “Multiwavelength laser light transmission of hollow optical fiber from the visible to the mid-infrared,” Optics Letters 30, 28672869 (2005)Google Scholar
7. Russell, P., “Photonic crystal fibers,” Science 299, 358362 (2003)Google Scholar
8. Smith, C.M., Venkataraman, N., Gallagher, M.T., Muller, D., West, J.A., Borrelli, N.F., Allan, D.C., Koch, K.W., “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424, 657659 (2003)Google Scholar
9. Eijkelenborg, M.A. van, Argyros, A., Barton, G., Bassett, I.M., Fellew, M., Henry, G., Issa, N.A., Large, M.C.J., Manos, S., Padden, W., Poladian, L., Zagari, J., “Recent progress in microstructured polymer optical fibre fabrication and characterisation,” Opt. Fiber Techn. 9, 199209 (2003)Google Scholar
10. Katagiri, T., Matsuura, Y., Miyagi, M., “Photonic bandgap fiber with a silica core and multilayer dielectric cladding,” Opt. Lett. 29, 557559 (2004)Google Scholar
11. Temelkuran, B., Hart, S.D., Benoit, G., Joannopoulos, J.D., Fink, Y., “Hollow photonic bandgap fibers for NIR applications,” Nature 420, 650653 (2002)Google Scholar
12. Skorobogatiy, M., “Efficient anti-guiding of TE and TM polarizations in low index core waveguides without the need of omnidirectional reflector,” Optics Letters 30, 2991 (2005)Google Scholar
13. Skorobogatiy, M. et al. “Consecutive Solvent Evaporation Technique to Fabricate Polymer Multilayer Hollow Fiber Preforms”, submitted.Google Scholar
14. Matovich, M.R. and Pearson, J.R.A., “Spinning a molten threadline – Steady-state isothermal viscous flows,” Ind. Eng. Chem. Fundam., 512–520 (1969).Google Scholar
15. Shah, Y.T. and Pearson, J.R.A., “On the stability of nonisothermal fiber spinning,” Ind. Eng. Chem. Fundam., 145–149 (1972).Google Scholar
16. Burgman, J.A.Liquid glass jets in the forming of continuous fibers,” Glass Technol., 110–116 (1970).Google Scholar
17. Geyling, F.T., “Basic fluid dynamic consideration in the drawing of optical fibers,” Bell Sys. Tech. J., 1011–1056 (1976).Google Scholar
18. Freeman, B.D., Denn, M.M., Keunings, R., Molau, G.E. and Ramos, J., “Profile development in drawn hollow tubes,” J. Polym. Eng., 171–186 (1986).Google Scholar
19. Fitt, A.D., Furusawa, K., Monro, T.M., Please, C.P. and Richardson, D.J., “The mathematical modelling of capillary drawing for holey fibre manufacture,” J. Eng. Math., 201–227 (2002).Google Scholar
20. Xue, S.C., Tanner, R.I., Barton, G.W., Lwin, R., Large, M.C.J. and Poladian, L., “Fabrication of microstructured optical fibers – Part I: Problem formulation and numerical modeling of transient draw process,” J. Lightw. Technol., 2245–2254 (2005).Google Scholar
21. Xue, S.C., Tanner, R.I., Barton, G.W., Lwin, R., Large, M.C.J. and Poladian, L., “Fabrication of microstructured optical fibers – Part II: Numerical modeling of steady-state draw process,” J. Lightw. Technol., 2255–2266 (2005).Google Scholar
22. Cummings, L.J., Howell, P.D., “On the evolution of non-axisymmetric viscous fibres with surface tension, inertia and gravity,” J. Fluid mech., 361–389 (1999).Google Scholar
23. Reeve, H.M., Mescher, A.M. and Emery, A.F., “Investigation of steady-state drawing force and heat transfer in polymer optical fiber manufacturing,” Journal of Heat Transfer, 236–243 (2004).Google Scholar
24. Wu, S., “Surface and interfacial tensions of polymer melts. II. Poly(methylmethacrylate), poly(n-butylmethacrylate), and polystyrene,” J. Phys. Chem., 632–638 (1970).Google Scholar