Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T18:21:05.806Z Has data issue: false hasContentIssue false

Drastic Reduction of Threading Dislocation Density of AlGaN on SiC Wafer by Using Highly-Si-Incorporated AlGaN Superlattice

Published online by Cambridge University Press:  17 March 2011

Hideki Hirayama
Affiliation:
The Institute of Physical and Chemical Research (RIKEN), 2-1, Hirosawa, Wako-shi, Saitama, 351-0198, Japan, [email protected]
Makoto Ainoya
Affiliation:
The Institute of Physical and Chemical Research (RIKEN), 2-1, Hirosawa, Wako-shi, Saitama, 351-0198, Japan, [email protected] Department of Chemical Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
Atsuhiro Kinoshita
Affiliation:
The Institute of Physical and Chemical Research (RIKEN), 2-1, Hirosawa, Wako-shi, Saitama, 351-0198, Japan, [email protected] Department of Chemical Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
Akira Hirata
Affiliation:
Department of Chemical Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
Yoshinobu Aoyagi
Affiliation:
The Institute of Physical and Chemical Research (RIKEN), 2-1, Hirosawa, Wako-shi, Saitama, 351-0198, Japan, [email protected]
Get access

Abstract

A new in-situ technique to reduce threading dislocation density (TDD) within sub- micron growth is demonstrated by using metal-organic vapor-phase epitaxy (MOVPE). We achieved drastic reduction of TDD of AlGaN buffer on SiC substrate by inserting highly-Si- incorporated AlGaN/undoped AlGaN superlattice (SL). TDD of AlGaN was decreased from 2×1010 to 7×107 cm−2 by inserting the SL with the total growth thickness of 0.8νm. Si incorporation in AlGaN SL was estimated to be 1.2×1020 cm−3. This technique is exactly in- situ process without complicated fabrication processes, and the surface is kept flat throughout the total growth. This method is especially useful on SiC wafer in order to prevent cracks with thin growth layer. We confirmed the similar effects for GaN and AlGaN buffer on sapphire substrates.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hirayama, H., Enomoto, Y., Kinoshita, A., Hirata, A. and Aoyagi, Y., The Tenth International Conference on Metal organic Vapor Phase Epitaxy (ICOMVPE-X'2000), Fr-A8, Sapporo, 2000.Google Scholar
2. Amano, H., Sakai, N., Akasaki, I. and Toyoda, Y., Appl. Phys. Lett., 48, 353 (1986).Google Scholar
3. Nakamura, S., Senoh, M., Nagahama, S., et al, Appl. Phys. Lett. 72, 211 (1998).Google Scholar
4. Marchand, H., Wu, X.H., Ibbetson, J.P., Fini, P.T., Kozodoy, P., Keller, S., Speck, J.S., DenBaars, S.P. and Mishara, U.K., Appl.Phys.Lett., 73, 747 (1998).Google Scholar
5. Geherk, T., Linthicum, K.J., Thomoson, D.B., Rajagopal, P., Batcheior, A.D. and Davis, R.F., MRS Internet J.Semicond.Res., 4S1, G 3.2 (1999).Google Scholar
6. Geherk, T., Linthicum, K.J., Rajagopal, P., Preble, E.A., and Davis, R.F., Mat.Res.Soc.Symp., Vol.595 W2.4.1 (1999).Google Scholar
7. Usui, A., Sunakawa, H., Sakail, A and Yamaguchi, A., Jpn. J. Appl. Phys., 36, 899 (1997).Google Scholar
8. Tanaka, S., Takeuchi, M. and Aoyagi, Y., Jpn. J. Appl. Phys. 39 L831 (2000).Google Scholar
9. Ruvimov, S., Weber, Z. L., Suski, T., Ager, J. W. III, Washbum, J., Krueger, J., Kisielowski, C., Weber, E. R., Amano, H. and Akasaki, I., Appl. Phys. Lett. 69, 990 (1996).Google Scholar
10. Kagawa, K., Hoributi, K., Kuwano, N., Oki, K. and Hiramatu, K., International Workshop on Nitride semiconductors., PME- 25 (2000).Google Scholar
11. Kawaguchi, Y., Shimizu, M., Yamaguchi, M., Hiramatu, K., Sakai, N., Taki, W., Tsuda, H., Kuwano, N., Oki, K., Zheleva, T. and Davis, R.F., J.Cryst.Growth., 189/190, 67 (1998).Google Scholar