Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T15:53:22.023Z Has data issue: false hasContentIssue false

Doping of Sub-50nm SOI Layers

Published online by Cambridge University Press:  01 February 2011

Bartek J. Pawlak
Affiliation:
[email protected], NXP Semiconductors, Process Technology, Kapeldreef 75, Leuven,, B-3001, Belgium, 32-16-281-060, 32-16-285-788
Ray Duffy
Affiliation:
[email protected], NXP-TSMC Research Center, Kapeldreef 75, Leuven, 3001, Belgium
Mark van Dal
Affiliation:
[email protected], NXP-TSMC Research Center, Kapeldreef 75, Leuven, 3001, Belgium
Frans Voogt
Affiliation:
[email protected], NXP Semiconductors, Nijmegen, N/A, Netherlands
Robbert Weemaes
Affiliation:
[email protected], Philips, Eindhoven, N/A, Netherlands
Fred Roozeboom
Affiliation:
[email protected], NXP Semiconductors, Eindhoven, N/A, Netherlands
Peer Zalm
Affiliation:
[email protected], Philips, Eindhoven, N/A, Netherlands
Nick Bennett
Affiliation:
[email protected], University of Newcastle, Newcastle, N/A, United Kingdom
Nick Cowern
Affiliation:
[email protected], University of Newcastle, Newcastle, N/A, United Kingdom
Get access

Abstract

Doping of thin body Si becomes very essential topic due to increasing interest of forming source/drain regions in fully depleted planar silicon-on-isolator (SOI) devices or vertical Fin field-effect-transistors (FinFETs). To diminish the role of the short-channel-control-effect (SCE) the Si layers thicknesses target the 10 nm range. In this paper many aspects of thin Si body doping are discussed: dopant retention, implantation-related amorphization, thin body recrystallization, sheet resistance (Rs) and carrier mobility in crystalline or amorphized material, impact of the annealing ambient on Rs for various SOI thicknesses. The complexity of 3D geometry for vertical Fin and the vicinity of the extended surface have an impact on doping strategies that are significantly different than for planar bulk devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Duffy, R., Curatola, G., Pawlak, B. J., Doornbos, G., Tak, K. van der, Breimer, P., Berkum, J. G. M. van, and Roozeboom, F., J. Vac. Sci. Technol. B 26, 402 (2008).Google Scholar
[2] Ziegler, J.F., Ziegler, M.D., Biersack, J.P., SRIM 2006.Google Scholar
[3] Matsumoto, S., Niimi, T., Murota, J., Arai, E., J. Elect. Soc. 127, 1650 (1980).Google Scholar
[4] Duffy, R., Dal, M. J. H. Van, Pawlak, B. J., Kaiser, M., Weemaes, R. G. R., Degroote, B., Kunnen, E., and Altamirano, E., Appl. Phys. Lett. 90, 241912 (2007).Google Scholar
[5] Hamilton, J. J., Kirkby, K. J., Cowern, N. E. B., Collart, E. J. H., Bersani, M., Giubertoni, D., Gennaro, S., and Parisini, A., Appl. Phys. Lett. 91, 092122 (2007).Google Scholar
[6] Kluth, S. M., Álvarez, D., Trellenkamp, St., Moers, J., and Mantl, S., Kretz, J., and Vandervorst, W., J. Vac. Sci. Technol. B 23, 76 (2005).Google Scholar
[7] Mizuo, S., Kusaka, T., Shintani, A., Nanba, M., and Higuchi, H., J. Appl. Phys. 54, 3860 (1983).Google Scholar
[8] Guillemot, N., Tsoukalas, D., Tsamls, C., Margail, J., and Paon, M., J. Appl. Phys. 71, 1713 (1992).Google Scholar
[9] Zhong, L., Kirino, Y., Matsushita, Y., Aiba, Y., Hayashi, K., Takeda, R., Shirai, H., Saito, H., Matsushita, J., and Yoshikawa, J., Appl. Phys. Lett. 68, 1229 (1996).Google Scholar
[10] Yamazaki, T., Matsumura, Y., Yraoka, Y., and Fuyuki, T., Jpn. J. Appl. Phys., 45, 342 (2006).Google Scholar