No CrossRef data available.
Published online by Cambridge University Press: 26 February 2011
Change of the charge ordered (CO) structure by substituting Cu2+ for Fe2+ in LuFe2O4 was investigated by means of the transmission electron microscopy. The CO structure in LuFe2O4 is characterized by the modulated structure with the wave vector of q=1/3[1-13/2] and the average size of the CO domains can be estimated to be about 10-20nm. On the contrary, the Cu2+ substitution in LuFe2O4 destroyed the CO structure drastically and induced characteristic local lattice distortion, which gives rise to characteristic diffuse scattering in the reciprocal space. High-resolution lattice images revealed that there exist nano-scale clusters, which are characterized as the short-range ordering of the Fe3+ and Cu2+ ions on the triangular lattice. In addition, the magnetic measurement revealed that LuFeCuO4 exhibits an antiferromagnetic transition around 50K, which is lower than the Neel temperature of 250K in LuFe2O4.