Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T01:36:58.387Z Has data issue: false hasContentIssue false

Doped ZnO Colloids for Cancer Detection - Bio-Imaging and Cytotoxicity Study

Published online by Cambridge University Press:  31 January 2011

Linda Y.L. Wu
Affiliation:
[email protected], Singapore Institute of Manufacturing Technology, Surface Technology, 71 Nanyang Drive, Singapore, 638075, Singapore, 65-67938999, 65-67916377
June Loh
Affiliation:
[email protected], National Institute of Education, Singapore, Singapore
Sheng Fu
Affiliation:
[email protected], National Institute of Education, Singapore, Singapore
Alfred I.Y. Tok
Affiliation:
[email protected], Nanyang Technological University, Singapore, Singapore
Xianting Zeng
Affiliation:
[email protected], Singapore Institute of Manufacturing Technology, Singapore, Singapore
Leong Chuan Kwek
Affiliation:
[email protected], National Institute of Education, Singapore, Singapore
Freddy Y.C. Boey
Affiliation:
[email protected], Nanyang Technological University, Singapore, Singapore
Get access

Abstract

We report the synthesis and surface modification of bio-friendly ZnO based colloids, which have been used for cancer cell detection providing significant advantages on quantum confinement effects, high emission brightness in UV to blue-violate range, non-toxicity and a unique dual color imaging feature. The ZnO nanoparticles were single crystal nanoparticles having spherical shape in size of 1-2 or 4-5 nm depending on the surface capping agents. All the colloidal solutions were stable for 30-45 days. The surface capping is a more effective technique in controlling the nanoparticle size, while dopants are effective in modifying the bandgap and optical properties. Unique dual colour images with blue colour in nucleus and turquoise colour in cytoplasm were obtained using either pure ZnO or Co doped ZnO colloids on human osteosarcoma (Mg-63) cells. The dual colour function is the combined effects of quantum confinement and the bio-compatible surface capping groups. The cytotoxicity study proved no cell proliferation by the nanoparticles up to the concentration of 1000 μg/mL, which is the highest concentration reported so far. Since a dosage of only 50-100μM is enough for the in vivo detection on rate, these ZnO colloids have high potential for use as the detection media for Lab-on-a-Chip devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Politz, J.C. Trends in Cell Biology 9(7), 284287 (1999)10.1016/S0962-8924(99)01585-8Google Scholar
[2] jrBruchez, M., Moronne, M. Science 281(5385), 2013 (1998).10.1126/science.281.5385.2013Google Scholar
[3] Alivisatos, A.P. Science 271, 933937 (1996).10.1126/science.271.5251.933Google Scholar
[4] Lin, C.J., Liedl, T. Sperling, R.A., Fernandez, M.T., Pereiro, R. Medel, A. et al. J. Mater. Chem., 17, 13431346 (2007).10.1039/B618902DGoogle Scholar
[5] Ristic, M. Music, S. Ivanda, M. Popovic, S. Journal of Alloys and Compounds 397(1-2), L1–L4 (2005).10.1016/j.jallcom.2005.01.045Google Scholar
[6] Bauermann, L.P., Bill, J. and Aldinger, F. J. Phys. Chem. B 110, 51825185 (2006).Google Scholar
[7] Soares, J.W., Steeves, D.M., Ziegler, D. DeCristofano, B.S. Proceedings of SPIE, 6370, 637011 (2006).10.1117/12.684875Google Scholar
[8] Ning, G.H., Zhao, X. Li, J. Optical Materials 27, 15 (2004).10.1016/j.optmat.2004.01.013Google Scholar
[9] Gonzalez, A.E. J. J. Solid State Chem. 128, 176180 (1997).10.1006/jssc.1996.7166Google Scholar
[10] Chen, Y.W., Liu, Y.C., Lu, S.X., Xu, C.S., Shao, C.L., Wang, et al. J. Chem. Phys. 123, 134701 (2005).10.1063/1.2009731Google Scholar
[11] Cong, C.J., Liao, L. Li, J.C., Fan, L.X., Zhang, K.L. Nanotechnology 16, 981984 (2005).10.1088/0957-4484/16/6/060Google Scholar
[12] Liao, Y. Huang, T. Lin, M. Yu, K. Hsu, H.C., Lee, T. et al. J. Magnetism Magn. Mater. 310, e818–e820 (2007).10.1016/j.jmmm.2006.10.774Google Scholar
[13] Wu, Y.L., Fu, S. Tok, A.I.Y., Zeng, X.T., Lim, C.S., Kwek, L.C., Boey, F.C.Y. Nanotechnology 19, 345605 (2008).10.1088/0957-4484/19/34/345605Google Scholar
[14] Wu, Y.L., Lim, C.S., Fu, S. Tok, A.I.Y., Lau, H.M., Boey, F.Y.C., Zeng, X.T. Nanotechnology 18, 215604215612 (2007).10.1088/0957-4484/18/21/215604Google Scholar
[15] Dijken, A.V., Meulenkamp, E.A., Vanmaekelbergh, D., Meijerink, A. J. Phys. Chem. B104, 17151723 (2000).10.1021/jp993327zGoogle Scholar
[16] Derfus, A.M., Chan, W. C. W., & Bhatia, S.N. Nano Lett. 4, 1118 (2004).10.1021/nl0347334Google Scholar
[17] Gao, X.H., Cui, Y., Levenson, R.M., Chung, L.W.K., & Nie, S. Nat. Biotechnol. 22(8), 969976 (2004)10.1038/nbt994Google Scholar
[18] Ballou, B., Lagerholm, B.C., & Ernst, L.A. Bioconjugate Chem., 15, 7986 (2004).10.1021/bc034153yGoogle Scholar
[19] Selvan, S.T., Tan, T., & Ying, J.Y. Robust, Adv. Mater 17, 16201625 (2005).10.1002/adma.200401960Google Scholar
[20] Hoshino, A., Fujioka, K., Oku, T., Suga, M., Sasaki, Y.F., Ohta, T. et al. Nano Lett. 4(11), 21632169 (2004)10.1021/nl048715dGoogle Scholar
[21] Clarke, S.J., Hollmann, C.A., Zhang, Z., Suffern, D., Bradforth, S.E., Dimitrijevic, N.M. et al. Nat. Mater. 5, 409417 (2006).10.1038/nmat1631Google Scholar