Article contents
Dopant Redistribution During Silicide Formation
Published online by Cambridge University Press: 26 February 2011
Abstract
After the review of dopant redistribution phenomena observed during formation of near noble metal suicides, we describe the results of our recent experiments to get a better understanding of a mechanism of the dopant redistribution phenomenon in Si substrates. The key factors to understand the dopant redistribution are dopant segregation at the suicide/ Si interface due to lower solubility limit of dopants in suicides, enhanced diffusion of dopants into the Si substrate at much lower temperatures than the ordinary thermal diffusion, and electrical activation of the redistributed dopants. The results of As and carrier concentration measurements before and after Pd2Si formation to make clear the third factor show that the electrical activity of the redistributed As atoms in Si is strongly dependent on the initial activity before Pd2Si formation which is controlled by the temperature for the pre-annealing of As implanted Si.
Shrinkage of extrinsic dislocation loops introduced by As implantation and subsequent annealing have been observed after Pd2Si formation, which is a good evidence of vacancy generation during Pd2Si formation. The role of the vacancies and interstitials on the second factor, the enhanced diffusion, has also been discussed. Finally we list a few issues to be answered in future by more detailed works in order to get a complete understanding of the redistribution phenomenon.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1986
References
REFERENCES
- 15
- Cited by