Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-19T11:13:16.305Z Has data issue: false hasContentIssue false

Donor-Acceptor Pairs in Silicon

Published online by Cambridge University Press:  03 September 2012

H. E. Altink
Affiliation:
Van der Waals-Zeeman Laboratorium, Universiteit van Amsterdam, Valckenierstraat 65–67, NL-1018 XE Amsterdam, The Netherlands
T. Gregorkiewicz
Affiliation:
Van der Waals-Zeeman Laboratorium, Universiteit van Amsterdam, Valckenierstraat 65–67, NL-1018 XE Amsterdam, The Netherlands
C. A. J. Ammerlaan
Affiliation:
Van der Waals-Zeeman Laboratorium, Universiteit van Amsterdam, Valckenierstraat 65–67, NL-1018 XE Amsterdam, The Netherlands
Get access

Abstract

Stable forms of donor-acceptor pairs in silicon arise from the interaction between negatively charged acceptors and 3d transition element donors, which, occupying interstitial sites, have high mobilities. The atomic and electronic structure of these pairs can be studied in detail by magnetic resonance. The symmetry of centers as observed in the resonance experiments gives strict constraints on the applicable atomic models. The spin of centers is related to their charge state. Hyperfine interactions frequently lead to a specific structure in the spectra, which characterizes the chemical identity of atomic components of the pair. Deep level transient spectroscopy provides a way of sensitive observation of electrically active impurities: to determine their concentrations and associated electronic levels. It allows the study of the kinetics of the pair formation process and thermally induced dissociation; binding energies can be determined. Transformation of pairs as a result of illumination was also observed. Several of the pairs can exist in geometrically different atomic configurations leading to the phenomenon of bi- or multi-stability. In the paper the donor-acceptor pair formation process is illustrated by examples involving the substitutional double acceptor zinc, for which new data became recently available.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Reiss, H., Fuller, C. S. and Morin, F. J., Bell System Technical Journal 35, 535 (1956).Google Scholar
2. Lemke, H., Phys. Stat. Sol. (a) 64, 215 (1981).Google Scholar
3. Perret, M., Stolwijk, N. A. and Cohausz, L., J. Phys.: Condens. Matter 1, 6347 (1989).Google Scholar
4. Fuller, C. S. and Morin, F.J., Phys. Rev. 105, 379 (1957).CrossRefGoogle Scholar
5. Carlson, R. O., Phys. Rev. 105, 1390 (1957).Google Scholar
6. Sklensky, A. F. and Bube, R. H., Phys. Rev. B 6, 1328 (1972).Google Scholar
7. Herman, J. M. III and Sah, C. T., Phys. Stat. Sol. (a) 14, 405 (1972).CrossRefGoogle Scholar
8. Herman, J. M. III and Sah, C.T., J. Appl. Phys. 44, 1259 (1973).Google Scholar
9. Lemke, H., Phys. Stat. Sol. (a) 22, 177 (1982).Google Scholar
10. Wang, A. C., Lu, L. S. and Sah, C. T., Phys. Rev. B 30, 5896 (1984).Google Scholar
11. Lebedev, A. A., Sultanov, N. A. and Ecke, W., Sov. Phys. Semicond. 21, 10 (1987).Google Scholar
12. Lebedev, A. A., Sultánov, N. A. and Ecke, W., Sov. Phys. Semicond. 21, 193 (1987).Google Scholar
13. Stolz, P., Pensi, G., Grünebaum, D. and Stolwijk, N., Mater. Sci. Eng. B4, 31 (1989).CrossRefGoogle Scholar
14. Weiss, S., Beckmann, R. and Kassing, R., Appl. Phys. A 50, 151 (1990).CrossRefGoogle Scholar
15. Kornilov, B. V., Sov. Phys. - Solid State 5, 2420 (1964).Google Scholar
16. Zavadskii, Yu. V. and Kornilov, B. V., Phys. Stat. Sol. 42, 617 (1970).Google Scholar
17. Merk, E., Heyman, J. and Haller, E. E., Solid State Commun. 72, 851 (1989).CrossRefGoogle Scholar
18. Dörnen, A., Kienle, R., Thonke, K., Stolz, P., Pensi, G., Grünebaum, D. and Stolwijk, N. A., Phys. Rev. B 40, 12005 (1989).Google Scholar
19. Adilov, K. A., Phys. Stat. Sol. (b) 162, 159 (1991).Google Scholar
20. Ludwig, G. W. and Woodbury, H. H., in ‘Solid State Physics’, editors Seitz, F. and Turnbull, D. (Academic Press, New York, 1962), Vol. 13, p. 223.Google Scholar
21. Ammerlaan, C. A. J. and van Oosten, A. B., in ‘Defect Control in Semiconductors’, editor Sumino, K. (Elsevier Science Publishers, Amsterdam, 1990), p. 279.Google Scholar
22. Graff, K. and Pieper, H., J. Electrochem. Soc. 128 669, (1981).CrossRefGoogle Scholar
23. van Kooten, J. J., Weller, G. A. and Ammerlaan, C. A. J., Phys. Rev. B30 4564 (1984).Google Scholar
24. Chantre, A. and Bois, D., Phys. Rev. B 31, 7979 (1985).Google Scholar
25. Wünstel, K. and Wagner, P., Appl. Phys. A 22, 207 (1982).Google Scholar
26. Conzelmann, H., Graff, K. and Weber, E. R., Appl. Phys. A30, 169 (1983).Google Scholar