Article contents
Domain Structure of Thick GaN Layers Grown by Hydride Vapor Phase Epitaxy
Published online by Cambridge University Press: 15 February 2011
Abstract
The crystal structure and surface morphology of hydride vapour phase epitaxy grown thick (12-105 μm) GaN layers have been investigated as a function of growth rate using several structure sensitive techniques like atomic force microscopy (AFM), x-ray diffraction (XRD) in ω-2Θ and ω-rocking curve measurements as well as low temperature photoluminescence (PL). PL and XRD measurements reveal rather narrow lines: full width at half maximum (FWHM) values of the strongest donor-bound exciton line are in the range from 6.0 to1.8 meV and ω-2Θ FWHM values are between 80 and 23 arcsec indicating good structural quality of the films. The ω-rocking curves show a single peak for the thinnest films with a FWIM of 250 arcsec and multiple peaks with FWHIM of about 250-350 arcsec in thicker films indicating the formation of several high-quality domains when increasing either thickness or growth rate. Optical microscopy and AFM images reveal a domain type of morphology and also show an appearance of spiral hillocks in layers grown at growth rates exceeding a critical value. We interpret these results as dominating 2D multilayer growth at low growth rates, and competing 2D multilayer and spiral growth mechanisms at high growth rates.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1999
References
- 2
- Cited by