Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T15:46:39.322Z Has data issue: false hasContentIssue false

Domain Structure and Thermal Dependence of the Coercive Field in Nanocrystalline FeZrBCu

Published online by Cambridge University Press:  17 March 2011

A. Hernando
Affiliation:
Instituto de Magnetismo Aplicado (UCM, RENFE) P.O. Box 155, 28230, Las Rozas (Madrid), Spain
J. Arcas
Affiliation:
Instituto de Magnetismo Aplicado (UCM, RENFE) P.O. Box 155, 28230, Las Rozas (Madrid), Spain
Get access

Abstract

Nanocrystalline Fe85Zr7B6Cu2 and Fe87.2Zr7.4B4.3Cu1.1 (at. %) samples have been obtained by annealing Melt-spun ribbons for 1hr at various temperatures in the range 593K to 953K. Structural characterization by means of X-ray diffraction and thermomagnetic analyses reveal the manifestations of Fe nanocrystals embedded in an amorphous matrix. The coercive field has been measured by a Förster coercimeter at temperatures ranging between 50 K and 300 K, and the room temperature domain structure has been monitored by magneto-optical Kerr effect. Both, the as cast as well as the sample annealed above 813K display soft magnetic properties at room temperature, exhibiting a coercive field below 10 A/m, and wide regular domains. In contrast, the samples annealed at 750 K, corresponding to the beginning of the crystallization process, undergo a magnetic hardening, showing higher coercive fields (up to 150 A/m for Fe87.2Zr7.4B4.3Cu1.1) and a dull domain pattern. When these magnetically harder samples are cooled, their coercivity is reduced. Thus, the magnetic hardening is attributed to the exchange decoupling between crystallites, due to the proximity of the Curie temperature of the amorphous phase.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Suzuki, K., Makino, A., Kataoka, N., Inoue, A., Masumoto, T., Materials Transactions, JIM, 32, 93 (1991).Google Scholar
2. Manaf, A., Buckley, R.A. and Davies, H. A., J. Magn. Magn. Mat. 128, 302 (1993).Google Scholar
3. Alben, R., Becker, J.J., Chi, M. C., J. Appl. Phys. 64, 6044 (1988).Google Scholar
4. Herzer, G., IEEE Trans. Magn., 25, 3327 (1989).Google Scholar
5. Arcas, J., Hernando, A., Gómez-Polo, C., Castaño, F. J., Vázquez, M., Neuwiler, A. and Krönmuller, H., J. Phys. Condens. Matter. 12, 3255 (2000).Google Scholar
6. Knobel, M., Santos, D.R., Torriani, I.L., Turtelli, R.S., Nanostructured Materials 2, 339 (1993).Google Scholar
7. Slawska-Waniewska, A., Gutowski, M., Lachowicz, H. K., Kulik, T. and Matyja, H., Phys. Rev. B, 46, 14594 (1992).Google Scholar
8. Hernando, A., Navarro, I. and Gorría, P., Phys. Rev. B, 51, 3281 (1995).Google Scholar
9. Garitaonandia, J. S., Schmool, D. S. and Barandiarín, J. M., Phys. Rev. B 58, 12147 (1998).Google Scholar
10. Suzuki, K., Makino, A., Inoue, A., Masumoto, T., J. Appl. Phys. 70, 6232 (1991).Google Scholar