Article contents
Do Natural Silks Make Good Engineering Materials?
Published online by Cambridge University Press: 17 March 2011
Abstract
Fast relaxation of stresses lower than the yield stress is demonstrated in Bombyx mori(silkworm) cocoon silk and Nephila clavipes (spider) major ampullate silk (MAS; dragline). Stress relaxation and creep make natural silk unsuitable as a long-term load-bearing material. Instead, silk-like materials are better suited to applications in which energy dissipation is important, and in which high loads need to be withstood on a once-off basis for only very short periods of time. Examples might include use as a ballistic material that arrests the penetration of fragments from the explosion of a pressure vessel, an aircraft luggage container, or a tyre. Treatment in a domestic microwave oven is shown to significantly reduce the rate of stress relaxation in both silkworm cocoon and spider MAS. Except for ductility, the tensile properties of cocoon silk measured in constant strain rate experiments are enhanced by this treatment. Initial experiments on MAS suggest that the tensile properties of this material also are enhanced by exposure to microwaves, in this case with the exception of initial modulus.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2004
References
- 4
- Cited by