Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T07:23:06.587Z Has data issue: false hasContentIssue false

DNA-Templated Assembly of Conducting Gold Nanowires

Published online by Cambridge University Press:  01 February 2011

Amro Satti
Affiliation:
[email protected], University College Dublin, School of Chemistry and Chemical Biology, Belfield, Dublin, N/A, D4, Ireland, +353 1 716 2107, +353 1 716 1178
Damian Aherne
Affiliation:
[email protected], University College Dublin, School of Chemistry and Chemical Biology, Belfield, Dublin, N/A, D4, Ireland
Claire Barrett
Affiliation:
[email protected], Tyndall National Institute, Nanotechnology Group, Lee Maltings, Cork, N/A, N/A, Ireland
Liam Floyd
Affiliation:
[email protected], Tyndall National Institute, Nanotechnology Group, Lee Maltings, Cork, N/A, N/A, Ireland
Aidan Quinn
Affiliation:
[email protected], Tyndall National Institute, Nanotechnology Group, Lee Maltings, Cork, N/A, N/A, Ireland
Gareth Redmond
Affiliation:
[email protected], Tyndall National Institute, Nanotechnology Group, Lee Maltings, Cork, N/A, N/A, Ireland
Donald Fitzmaurice
Affiliation:
[email protected], University College Dublin, School of Chemistry and Chemical Biology, Belfield, Dublin, N/A, D4, Ireland
Get access

Abstract

The use of DNA to template the assembly of gold nanowires from gold nanoparticles is reported. Double-stranded calf thymus DNA, was deposited on a polystyrene-coated silicon wafer substrate. The substrate was then exposed to an aqueous dispersion of positively charged gold nanoparticles (~ 4 nm diameter), which adsorbed at the negatively charged DNA template. The adsorbed nanoparticles were then enlarged and enjoined by electroless deposition leading to formation of continuous nanowires of 85 nm average diameter. Gold electrodes were then overlaid on individual nanowires using conventional lithographic techniques. Two-terminal current-voltage measurements were employed to characterize the electrical characteristics of single nanowires. The nanowires exhibit resistivity values < 6 × 10-7 Ωm. These and related findings have implications for the design and assembly of next generation electronic devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Moore, G. E., Electronics, 38 (1965).Google Scholar
2.International Technology Roadmap for Semiconductors, 2005, (http://www.itrs.net/Common/2005ITRS/Home2005.htm)Google Scholar
3. Braun, E., Eichem, C. Y., Sivan, U., Ben-Yoseph, G., Nature 391, 775 (1998).Google Scholar
4. Keren, K., Krueger, M., Gilad, R., Ben-Yoseph, G., Sivan, U., Braun, E., Science 72, 297 (2002).Google Scholar
5. Richter, J., Physica E, 16, 157 (2003).Google Scholar
6. Harnack, O., Ford, W. E., Yasuda, A., Wessels, J. M., Nano Lett. 2, 919 (2002).Google Scholar
7. Nakao, H., Shiigi, H., Yamamoto, Y., Tokonami, S., Nagaoka, T., Sugiyama, S., Ohtani, T., Nano Lett. 3, 1391 (2003).Google Scholar
8. Harnack, O., Ford, W., Karipidou, Z., Yasuda, A., Wessels, J., Proceedings of Foundations of Nanoscience: Self-Assembled Architectures and Devices, Snow Bird, Utah, USA, April 21-23, 2004.Google Scholar
9. Ongaro, A., Griffin, F., Beecher, P, Nagle, L., Iacopino, D., Quinn, A., Redmond, G., Fitzmaurice, D., Chem. Mater. 17, 1959 (2005).Google Scholar
10. Griffin, F., Fitzmaurice, D., Langmuir, (2006) (manuscript in preparation).Google Scholar
11. Nakao, H., Hayashi, H., Yoshino, T., Sugiyama, S., Otobe, K., Ohtani, T., Nano Lett. 2, 475 (2002).Google Scholar
12. Nakao, H., Gad, M., Sugiyama, S., Otobe, K., Ohtani, T., J. Am. Chem. Soc. 125, 7162 (2003).Google Scholar
13. Brown, K. R., Lyon, L. A., Fox, A. P., Reiss, B.D., and Natan, M. J., Chem. Mater. 12, 314 (2000).Google Scholar
14. Hrapovic, S., Liu, Y., Enright, G., Bensebaa, F., and Luong, J. H. T., Langmuir, 19, 3958 (2003).Google Scholar
15. Brown, K. R., Walter, D. G., and Natan, M. J., Chem. Mater. 12, 306 (2000).Google Scholar
16. Brown, K. R., Natan, M. J., Langmuir, 14, 726 (1998).Google Scholar
17. , Stremsdoerfer, Perrot, H., Martin, J. R., Clechet, P., J Electrochem. Soc. 135, 2881 (1988).Google Scholar
18. Durkan, C., Welland, M. E., Phys. Rev. B 61, 14215 (2000).Google Scholar