Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T02:38:37.606Z Has data issue: false hasContentIssue false

DNA-ISFETs from Single Crystalline Diamond

Published online by Cambridge University Press:  01 February 2011

Christoph E. Nebel
Affiliation:
[email protected], Diamond Research Center, AIST, Central 2, 1-1-1, Tsukuba, 305-8568, Japan, 0298614836, 0298612773
Dongchan Shin
Affiliation:
[email protected], Diamond Research Center, AIST, Tsukuba, 305-8568, Japan
Tomoko Yamamoto
Affiliation:
[email protected], Diamond Research Center, AIST, Tsukuba, 305-8568, Japan
Takako Nakamura
Affiliation:
[email protected], Center for Advanced Carbon Material, AIST, Tsukuba, 305-8565, Japan
Get access

Abstract

DNA sensitive field-effect transistors (DNA-FET) have been realized using single crystalline diamond grown by plasma-enhanced chemical vapor deposition (CVD). To bond DNA to diamond, amine linker-molecules are covalently attached by photochemical means to H-terminated diamond surfaces. Using hetero-bifunctional cross-linker and thiol-modified single-strand (ss) marker DNA, the gate of diamond FETs is modified to sense hybridization of DNA, forming double-strand (ds) DNA molecules on the gate. The density of DNA bonded to diamond is varied between 1012 and 1013 cm−2 to explore sensitivity enhancements by reduction of the DNA molecule density. DNA-FET characterization in 1M NaCl buffer solution (pH 7.2) reveal gate-potential threshold shifts by hybridization in the range 30 mV to 100 mV with decreasing DNA density. The variation is discussed based on the transfer doping model which predicts with decreasing pH increasing hole-densities in the surface conductive layer of diamond.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yang, W., Auciello, O., Butler, J. E., Cai, W., Carlisle, J. A., Gerbi, J. E., Gruen, D. M., Knickerbocker, T., Lasseter, T. L., Russell, J. N. Jr, Smith, L. M., Hamers, R. J., Nature Materials 2002, 1, 253257.10.1038/nmat779Google Scholar
2. Yang, J.-H., Song, K.-S., Kuga, S., Kawarada, H., Jap. J. Appl. Phys. 2006, 45 (42), L1114.10.1143/JJAP.45.L1114Google Scholar
3. Yang, W., Butler, J. E., Russel, J. N. Jr, Hamers, R. J., Langmuir 2004, 20, 6778.Google Scholar
4. Takahashi, K.; Tanga, M.; Takai, O.; Okamura, H., Bio Industry 2000, 17(6), 44.Google Scholar
5. Takahashi, K., Tanga, M., Takai, O., Okamura, H., Diam. Rel. Mat. 2003, 12 (3–7), 572.10.1016/S0925-9635(03)00070-0Google Scholar
6. Song, K. S., Degawa, M., Nakamura, Y., Kanazawa, H., Umezawa, H., Kawarada, H., Jap. J. of Appl. Phys. Part 2-Letters&Express Letters 2004, 43 (6B), L814.10.1143/JJAP.43.L814Google Scholar
7. Wang, J. Firestone, M.A., Auciello, O., Carlisle, J. A., Langmuir 2004, 20 (26), 145011456.Google Scholar
8. Nebel, C. E., Shin, D., Takeuchi, D., Yamamoto, T., Watanabe, H., Nakamura, T., Langmuir 2006, 22 (13), 5645.Google Scholar
9. Nichols, B. M., Butler, J. E., Russel, J. N. Jr, Hamers, R. J., J. Phys. Chem. B 2005,109 (44), 20938.Google Scholar
10. Gi, R. S., Mizumasa, T., Akiba, Y., Hirose, Y., Kurosu, T., Iida, M., Jpn. J. Appl. Phys. 1995, 34, 5550.10.1143/JJAP.34.5550Google Scholar
11. Maier, F., Riedel, M., Mantel, B., Ristein, J., Ley, L., Phys. Rev. Lett. 2000, 85 (16), 3472.10.1103/PhysRevLett.85.3472Google Scholar
12. Shin, D., Rezek, B., Tokuda, N., Takeuchi, D., Watanabe, H., Nakamura, T., Yamamoto, T., Nebel, C. E., physica status solidi (a) 2006, 203, 13, 3245.10.1002/pssa.200671402Google Scholar
13. Nebel, C. E., Rezek, B., Shin, D., Watanabe, H., Yamamoto, T., J. Appl. Phys. 2006, 99, 33711 10.1063/1.2171805Google Scholar
14. Nebel, C. E., Rezek, B., Shin, D., Watanabe, H., phys. stat. sol. (a) 2006, 203 (13) 3273.Google Scholar
15. Poghossian, A., Cherstvy, A., Ingebrandt, S., Offenhaeusser, A., Schoening, M. J., Sensors and Act. B 2005, 111–112, 470.10.1016/j.snb.2005.03.083Google Scholar
16. Ishige, Y., Shimoda, M., Kamahori, M., Jap. J. Appl. Phys. 2006, 45 (4B), 3776.Google Scholar