No CrossRef data available.
Article contents
DNA-ISFETs from Single Crystalline Diamond
Published online by Cambridge University Press: 01 February 2011
Abstract
DNA sensitive field-effect transistors (DNA-FET) have been realized using single crystalline diamond grown by plasma-enhanced chemical vapor deposition (CVD). To bond DNA to diamond, amine linker-molecules are covalently attached by photochemical means to H-terminated diamond surfaces. Using hetero-bifunctional cross-linker and thiol-modified single-strand (ss) marker DNA, the gate of diamond FETs is modified to sense hybridization of DNA, forming double-strand (ds) DNA molecules on the gate. The density of DNA bonded to diamond is varied between 1012 and 1013 cm−2 to explore sensitivity enhancements by reduction of the DNA molecule density. DNA-FET characterization in 1M NaCl buffer solution (pH 7.2) reveal gate-potential threshold shifts by hybridization in the range 30 mV to 100 mV with decreasing DNA density. The variation is discussed based on the transfer doping model which predicts with decreasing pH increasing hole-densities in the surface conductive layer of diamond.
Keywords
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2007