Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-28T23:07:59.447Z Has data issue: false hasContentIssue false

DNA Separation Using Gold/Magnetic Iron-oxide Composite Nanoparticles

Published online by Cambridge University Press:  01 February 2011

Takuya Kinoshita
Affiliation:
Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.
Satoshi Seino
Affiliation:
Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan.
Yohei Otome
Affiliation:
Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.
Yoshiteru Mizukoshi
Affiliation:
Osaka Prefectural College of Technology, Neyagawa, Osaka 572-8572, Japan.
Takashi Nakagawa
Affiliation:
Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.
Tadachika Nakayama
Affiliation:
Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan.
Tohru Sekino
Affiliation:
Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan.
Koichi Niihara
Affiliation:
Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan.
Takao A. Yamamoto
Affiliation:
Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan.
Get access

Abstract

Amounts of oligonucleotides adsorbed onto the Au/γ-Fe2O3 composite nanoparticles synthesized by gamma-ray irradiation and picked up by a magnet were evaluated using fluorescence technique. The adsorbing capacity of the oligonucleotides on our nanoparticles are larger than a commercial magnetic beads for a separation of biomolecules.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Häfeli, U. O., Pauer, G. J., J. Magn. Magn. Mater. 194 (1999) 76.Google Scholar
2. Shinkai, M., J. Biosci. Bioeng. 6 (2002) 606.Google Scholar
3. Nishimura, K., Hasegawa, M., Ogura, Y., Nishi, T., Kataoka, K., Handa, H., Abe, M., J. Appl. Phys. 91 (2002) 8555.Google Scholar
4. Mornet, S., Vekris, A., Bonnet, J., Duguet, E., Grasset, F., Choy, J.-H., Portier, J., Mater. Lett. 42 (2000) 183.Google Scholar
5. Jordan, A., Scholz, R., Wust, P., Fahling, H., Felix, R., J. Magn. Magn. Mater. 201 (1999) 413.Google Scholar
6. Gupta, A. K., Gupta, M., Biomaterials 26 (2005) 3995.Google Scholar
7. Thaxton, C. S., Mirkin, C. A., Nanobiotechnology, ed. Niemeyer, C. M., Mirkin, C. A. (Wiley-VCH, Weinheim, 2004).Google Scholar
8. Mirkin, C. A., Letsinger, R. L., Mucic, R. C., Strhoff, J. J., Nature 382 (1996) 607.Google Scholar
9. Sato, K., Hosokawa, K., Maeda, M., J. Am. Chem. Soc. 125 (2003) 8102.Google Scholar
10. Daniel, M., Astruc, D., Chem. Rev. 104 (2004) 293.Google Scholar
11. Seino, S., Kinoshita, T., Otome, Y., Okitsu, K., Nakagawa, T., Yamamoto, T. A., Chem. Lett. 32 (2003) 690.Google Scholar
12. Mizukoshi, Y., Seino, S., Okitsu, K., Kinoshita, T., Otome, Y., Nakagawa, T. and Yamamoto, T. A., Ultrasonics Sonochemistry 12 (2005) 191.Google Scholar
13. Seino, S., Kinoshita, T., Otome, Y., Maki, T., Nakagawa, T., Okitsu, K., Mizukoshi, Y., Nakayama, T., Sekino, T., Niihara, K., Yamamoto, T. A., Scripta Materialia 51 (2004) 467.Google Scholar
14. Kinoshita, T., Seino, S., Otome, Y., Nakagawa, T., Okitsu, K., Mizukoshi, Y., Nakayama, T., Sekino, T., Niihara, K., Yamamoto, T. A., Mat. Res. Soc. Proc. EXS-1 (2004) I4.6.Google Scholar
15. Kinoshita, T., Seino, S., Mizukoshi, Y., Otome, Y., Nakagawa, T., Okitsu, K., Yamamoto, T. A., J. Magn. Magn. Mater. (in press)Google Scholar
16. Demers, L. M., Mirkin, C. A., Mucic, R. C., Reynolds, R. A., Letsinger, R. L., Elghanian, R., Viswanadham, G., Anal. Chem. 72 (2000) 5535.Google Scholar
17.http://www.dynal.noGoogle Scholar