Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-10T18:30:42.844Z Has data issue: false hasContentIssue false

Dlts and CV Analysis of Doped and N-Implanted GaN

Published online by Cambridge University Press:  15 February 2011

D. Haase
Affiliation:
Physikalisches Institut, Universität Stuttgart, 70550 Stuttgart Federal Republic of Germany, [email protected]
M. Schmid
Affiliation:
Physikalisches Institut, Universität Stuttgart, 70550 Stuttgart Federal Republic of Germany, [email protected]
A. Dörnen
Affiliation:
Physikalisches Institut, Universität Stuttgart, 70550 Stuttgart Federal Republic of Germany, [email protected]
V. Härle
Affiliation:
Physikalisches Institut, Universität Stuttgart, 70550 Stuttgart Federal Republic of Germany, [email protected]
H. Bolay
Affiliation:
Physikalisches Institut, Universität Stuttgart, 70550 Stuttgart Federal Republic of Germany, [email protected]
F. Scholz
Affiliation:
Physikalisches Institut, Universität Stuttgart, 70550 Stuttgart Federal Republic of Germany, [email protected]
M. Burkard
Affiliation:
Physikalisches Institut, Universität Stuttgart, 70550 Stuttgart Federal Republic of Germany, [email protected]
H. Schweizer
Affiliation:
Physikalisches Institut, Universität Stuttgart, 70550 Stuttgart Federal Republic of Germany, [email protected]
Get access

Abstract

We studied by deep level transient spectroscopy (DLTS) and capacitance-voltage (CV) measurements the effects of doping (Zn, S), nitrogen implantation and annealing of n-type GaN grown on sapphire by MOVPE. The DLTS spectra of the as grown samples show two defect levels which are assumed to be identical with recently reported levels [10, 11]. In N-implanted GaN a third level is introduced which is not detectable in our as grown samples. This levels concentration follows the increasing N-implantation density. The depth profiles of its concentration correlate with the distribution of implantation defects expected from Monte-Carlo simulation. After annealing at 900°C for 60s the additional defect level vanishes. The DLTS spectrum then resembles those of annealed as grown samples. The n-type carrier concentration (CV measurements) increases in samples with low N-implantation dose. This implantation effect can be removed also with the RTA step. The increasing carrier concentration provides evidence that the N vacancy is a donor in GaN. For Zn and S doped GaN deep defect levels has been found, which are reported here.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Amano, H., Kito, M., Hiramatsu, K., Akasaki, I., Jpn. J. Appl. Phys. 28 L211214 (1989)Google Scholar
2. Akasaki, I., Hiramatsu, K., Amano, H., Memories of the Faculty of Engineering, Nagoya University, Vol.43, No. 2. March 1992, Nagoya, Japan Google Scholar
3. Nakamura, S., Senoh, M., Mukai, T., Jpn. J. Appl. Phys. 32 L8–L11 (1993)Google Scholar
4. Nakamura, S., Senoh, M., Nagarama, S., Iwasa, N., Yamada, T., Matsushita, T., Kiyoku, H., Sugimoto, Y., Jpn. J. Appl. Phys. 35 L74 (1996)Google Scholar
5. Monemar, B., Lagerstedt, O., Gislason, H. P., J. Appl. Phys. 51, 625 (1980)Google Scholar
6. Pearton, S. J., Vartuli, C. B., Zolper, J. C., Yuan, C., Stall, R. A., Appl. Phys. Lett. 67, 1435 (1995)Google Scholar
7. Binari, S. C., Dietrich, H. B., Kelner, G., Rowland, L. B., Doverspike, K., Wickenden, D. K., J. Appl. Phys. 78, 3008 (1995)Google Scholar
8. Maruska, H. P. and Tietjen, J. J., Appl. Phys. Lett. 15, 327 (1969)Google Scholar
9. Pensl, G. in Börnstein, Landolt: Data Tables on Impurity and Defects, Series III, Vol 22, Part b, edited by Madelung, O. and Schulz, M. (Springer, Berlin/Heidelberg, 1989), Chap. 3.Google Scholar
10. Hacke, P., Detchprohm, T., Hiramatsu, K., Sawaki, N., J. Appl. Phys. 76, 304 (1994)Google Scholar
11. Götz, W., Johnson, N. M., Amano, H., Akasaki, I., Appl. Phys. Lett. 65, 463 (1994)Google Scholar
12. Jenkins, D. W. and Dow, J. D., Phys. Rev. B 39, 3317 (1989)Google Scholar
13. Jenkins, D. W., Dow, J. D., Tsai, M. H., J. Appl. Phys. 72, 4130 (1992)Google Scholar
14. Neugebauer, J., Van de Walle, C. G., Phys. Rev. B 50, 8067 (1994)Google Scholar
15. We used the software TRIM for this calculationsGoogle Scholar