Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T15:16:06.497Z Has data issue: false hasContentIssue false

Distinguishing negatively-charged and highly conductive dislocations in gallium nitride using scanning Kelvin probe and conductive atomic force microscopy

Published online by Cambridge University Press:  11 February 2011

Blake S. Simpkins
Affiliation:
Department of Electrical and Computer Engineering and Program in Materials Science, University of California at San Diego, La Jolla, CA 92093–0407
Edward T. Yu
Affiliation:
Department of Electrical and Computer Engineering and Program in Materials Science, University of California at San Diego, La Jolla, CA 92093–0407
Patrick Waltereit
Affiliation:
Materials Department, University of California, Santa Barbara, Santa Barbara, California
James S. Speck
Affiliation:
Materials Department, University of California, Santa Barbara, Santa Barbara, California
Get access

Abstract

Scanning Kelvin probe microscopy (SKPM) and conductive atomic force microscopy (C-AFM) are used to image surfaces of GaN grown by molecular beam epitaxy (MBE). Numerical simulations are used to assist in the interpretation of SKPM images. Detailed analysis of the same area using both techniques allows imaging of surface potential variations arising from the presence of negatively charged dislocations and dislocation-related current leakage paths. Correlations between the charge state of dislocations, conductivity of leakage current paths, and possibly dislocation type can thereby be established. Approximately 25% of the leakage paths appear to be spatially correlated with negatively charged dislocation features. This is approximately the level of correlation expected due to spatial overlap of randomly distributed, distinct features of the size observed, suggesting that the negatively charged dislocations are distinct from those responsible for localized leakage paths found in GaN. The effects of charged dislocation networks on the local potential profile is modeled and discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Nakamura, S., Senoh, M., Nagahama, S., Iwasawa, N., Yamada, T., Matsushita, T., Kiyohu, H., and Sguimoto, Y., Jpn. J. Appl. Phys. 35, L74 (1996).Google Scholar
2 Wu, Y. F., Keller, B. P., Fini, P., Keller, S., Jenkins, T. J., Kechias, L. T., Denbaars, S. P., and Mishra, U. K., IEEE Electron Device Letti. 19, 50 (1998).Google Scholar
3 Ng, H.M., Doppalapudi, D, Moustakas, T.D., Weimann, N.G., and Eastman, L.F., Appl. Phys. Lett. 73, 821 (1998).Google Scholar
4 Sugahara, T., Sato, H., Hao, M., Naoi, Y., Tottori, S., Yamashita, K., Nishino, K., Romano, L.T., and Sakai, S., Jpn. J. Appl. Phys. 37, L398 (1998).Google Scholar
5 Hsu, J. W., Manfra, M. J., Molnar, R. J., Heying, B., and Speck, J. S., Appl. Phys. Lett. 81, 79 (2002).Google Scholar
6 Miller, E.J., Schaadt, D.M., Yu, E.T., Poblenz, C., Elsass, C., and Speck, J. S., J. Appl. Phys., 91, 9821 (2002).Google Scholar
7 Hsu, J. W., Manfra, M. J., Lang, D. V., Baldwin, K. W., Pfeiffer, L. N., and Molnar, R. J., J. Electronic Mater., 30, 110(2001).Google Scholar
8 Simpkins, B. S., Schaadt, D. M., Yu, E. T., and Molnar, R. J., J Appl. Phys., 91, 9924 (2002).Google Scholar
9 Hansen, P. J., Strausser, Y. E., Erickson, A. N., Tarsa, E. J., Kozodoy, P., Brazel, E. G., Ibbetson, J. P., Mishra, U., Narayanamurti, V., Denbaars, S. P., and Speck, J. S., Appl. Phys. Lett, 72, 2247 (1998).Google Scholar
10 Schaadt, D. M., Miller, E. J., Yu, E. T., Redwing, J. M., Appl. Phys. Lett, 78, 88 (2001).Google Scholar
11 Heying, B., Averbeck, R., Chen, L. F., Haus, E., Riechert, H., and Speck, J. S., J. Appl. Phys., 88, 1855 (2000).Google Scholar
12 Wu, X. H., Brown, L. M., Kapolnek, D., Keller, S., Keller, B., Denbaars, S. P., and Speck, J. S., J. Appl. Pys. 80, 3228 (1996).Google Scholar
13 Nonnenmacher, M., O'Boyle, M.P., and Wickramasinghe, H.K., Appl. Phys. Lett. 58, 2921 (1991).Google Scholar
14 Jacobs, H. O., Knapp, H. F., Müller, S., and Stemmer, A., Ultramicroscopy, 69, 39 (1997).Google Scholar
15 Sze, S. M., Physics of Semiconductor Devices, 2nd ed., p. 246, (1981).Google Scholar
16 Robin, F., Jacobs, H., Homan, O., Stemmer, A., and Bachtold, W., Appl. Phys. Lett, 76, 2907 (2000).Google Scholar
17 Koley, G. and Spencer, M. G., Appl. Phys. Lett., 78, 2873 (2001).Google Scholar
18 Hsu, J. W. P., Ng, H. M., Sergent, A. M., and Chu, S. N. G., Appl. Phys. Lett, 81, 3579 (2002).Google Scholar
19 Wu, X. H., Fini, P., Tarsa, E. J., Heying, B., Keller, S., Mishra, U. K., Denbaars, S. P., and Speck, J. S., J Crystal Growth, 189/190, 231 (1998).Google Scholar
20 Wright, A. F. and Grossner, U., Appl. Phys. Lett, 73, 2751 (1998).Google Scholar
21 Ning, X. J., Chien, F. R., Pirouz, P., Yang, J. W., and Khan, M. Asif, J. Materials Res., 11, 580 (1996).Google Scholar
22 Elsner, J., Jones, R., Heggie, M. I., Sitch, P. K., Haugk, M., Frauenheim, Th., Öberg, S., and Briddon, P. R., Phys. Rev. B, 58, 12571 (1998).Google Scholar