Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-28T23:18:38.719Z Has data issue: false hasContentIssue false

Dispersions and fibers of carbon nanotubes

Published online by Cambridge University Press:  15 March 2011

Brigitte Vigolo
Affiliation:
Centre de Recherche Paul Pascal / CNRS, Université Bordeaux I, Avenue Schweitzer, 33600 Pessac, France
Alain Pénicaud
Affiliation:
Centre de Recherche Paul Pascal / CNRS, Université Bordeaux I, Avenue Schweitzer, 33600 Pessac, France
Claude Coulon
Affiliation:
Centre de Recherche Paul Pascal / CNRS, Université Bordeaux I, Avenue Schweitzer, 33600 Pessac, France
Cédric Sauder
Affiliation:
-LCTS, Allée de la Boëtie, 33600 Pessac, France
René Pailler
Affiliation:
-LCTS, Allée de la Boëtie, 33600 Pessac, France
Catherine Journet
Affiliation:
-GDPC, Université de Montpellier II, 34095 Montpellier, France
Patrick Bernier
Affiliation:
-GDPC, Université de Montpellier II, 34095 Montpellier, France
Philippe Poulin
Affiliation:
Centre de Recherche Paul Pascal / CNRS, Université Bordeaux I, Avenue Schweitzer, 33600 Pessac, France
Get access

Abstract

We study the phase behavior of single walled carbon nanotubes in aqueous solutions of surfactant molecules or amphiphilic polymers. Homogeneous dispersions can be obtained by using sodium dodecyl sulfate (SDS) in a well-defined concentration range. In contrast, polyvinyl alcohol (PVA) is not efficient at stabilizing the tubes. Carbon nanotubes stick with each other when PVA is added to homogeneous dispersions initially stabilized by SDS. This behavior is the basis of a simple method that we developed to assemble single walled carbon nanotubes into indefinitely long ribbons and fibers. The processing consists of dispersing the nanotubes in SDS solutions, re-condensing the nanotubes in the flow of a PVA solution to form a nanotube mesh, and then collating this mesh to a nanotube fiber. Flow induced alignment may lead to a preferential orientation of the nanotubes in the mesh that has the form of a ribbon. Unlike classical carbon fibers, the nanotube fibers can be strongly bent without breaking. Their obtained elastic modulus is 10 times higher than the modulus of high-quality bucky paper.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Overney, G., Zhong, W., Tomanek, D. Z., Phys. D 27, 93 (1993).Google Scholar
2. Robertson, D.H., Brenner, D.W., Mintmire, J.W., Phys. Rev. B. 45, 12592 (1992).Google Scholar
3. Treacy, M.M.J., Ebbesen, T.W., Gibson, J.M., Nature 381, 678 (1996).Google Scholar
4. Salvetat, J.P. et al. , Phys. Rev. Lett. 85, 944 (1999).Google Scholar
5. Falvo, M.R. et al. , Nature 389, 582 (1997).Google Scholar
6. Dresselhaus, M.S., Dresselhaus, G., Eklund, P.C.. Science of Fullerenes and Carbon Nanotubes (Academic Press, San Diego 1996).Google Scholar
7. Baughman, R.H. et al. , Science 284, 1340 (1999).Google Scholar
8. Thess, A. et al. , Science 273, 483 (1996).Google Scholar
9. Journet, C. et al. , Nature 388, 756 (1997).Google Scholar
10. Chen, J. et al. , Science 282, 95 (1998).Google Scholar
11. Rinzler, A.G. et al. , Applied Physics A 67, 29 (1998).Google Scholar
12. Smith, B.W. et al. , Applied Physics Letters 77, 663 (2000).Google Scholar
13. Gommans, H.H. et al. , Journal of Applied Physics 88, 2509 (2000).Google Scholar
14. Vigolo, B. et al. , Science 290, 1331 (2000).Google Scholar
15. Poulin, P. et al. , CNRS French Patent 0002272 (2000).Google Scholar
16. Anglaret, E. et al. , Private communication.Google Scholar
17. Launois, P. et al. , Private communication.Google Scholar
18. Hunter, R.J.. Foudations of Colloid Science, vol 1 (Oxford University Press, Oxford 1989).Google Scholar
19. A detailled description of these results will be published elsewhere.Google Scholar
20. Asakura, S., Oosawa, F., J. Chem. Phys. 22, 1255 (1954).Google Scholar
21. Bonard, J.M. et al. , Adv. Mat. 9, 827 (1997).Google Scholar
22. Doi, M., Edwards, S.F.. The theory of polymer dynamics (Oxford University Press, New-York 1986).Google Scholar
23. Clarke, S.M., Rennie, A.R., Convert, P., Europhysics Letters 35, 233 (1996).Google Scholar
24. Everett, D.H., Basic principles of colloid science p 138, 139, 191-201 (Royal Society of Chemistry, London 1988).Google Scholar
25. Hone, J. et al. , Applied Physics Letters 77, 666 (2000).Google Scholar
26. Baughman, R.H., Science 290, 1310 (2000).Google Scholar
27. Baughman, R.H. et al. Private communication.Google Scholar
28. Dai, H., Wong, E.W., Lieber, C., Science 272, 523 (1996).Google Scholar
29. Fisher, J.E. et al. , Phys. Rev. B 55, R4921 (1997).Google Scholar
30. Kane, C.L. et al. , Europhysics Letters 41, 683 (1998).Google Scholar
31. Nikolaev, P. et al. , Chemical physics letters 313, 91 (1999).Google Scholar
32. Donald, I.W., Production, properties and applications of microwire and related products. Journal of materials science 22, 2661 (1987).Google Scholar