Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-05T05:09:56.598Z Has data issue: false hasContentIssue false

Disordering of Si-Implanted GaAs-AlGaAs Superlattices by Rapid Thermal Annealing

Published online by Cambridge University Press:  26 February 2011

S.-Tong Lee
Affiliation:
Corporate Research Laboratories, Eastman Kodak Company, Rochester, New York 14650–2132
G. Braunstein
Affiliation:
Corporate Research Laboratories, Eastman Kodak Company, Rochester, New York 14650–2132
P. Fellinger
Affiliation:
Corporate Research Laboratories, Eastman Kodak Company, Rochester, New York 14650–2132
G. Rajeswaran
Affiliation:
Corporate Research Laboratories, Eastman Kodak Company, Rochester, New York 14650–2132
Get access

Abstract

We have studied the disordering phenomenon in GaAs-AlGaAs superlattices induced by Si implantation followed by rapid thermal annealing. Layer intermixing has been detected in superlattices implanted with 220 keV Si+ at doses ≥ 1×l015 cm−2 and annealed at 1050°C for 10 s. The amount of intermixing saturates with time after 10 s annealing, whence the lattice damage caused by the implantation is predominantly annealed out. The transient disordering is attributed to defect-induced layer intermixing occurring during the annealing of the implantation damage. Concurrent with the disordering, Si diffusion is observed to be minimal, which indicates that layer intermixing due to Si diffusion and other impurity effects lags behind that due to defects in the time scales of the present experiment.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Laidig, W.D., Holonyak, N., Jr., Camras, M.D., Hess, K., Coleman, J.J., Dapkus, P.D., and Bardeen, J., Appl. Phys. Lett. 38, 776 (1981).CrossRefGoogle Scholar
2. Laidig, W.D., Holonhak, N. Jr, Coleman, J.J., and Dapkus, P.D., J. Elect. Mat. 11, 1 (1982).CrossRefGoogle Scholar
3. Coleman, J.J., Dapkus, P.D., Kirkpatrick, C.G., Camras, M.D., and Holoyak, N. Jr, Appl. Phys. Lett. 40, 904 (1082).CrossRefGoogle Scholar
4. Gavrilovic, P., Meehan, K., Guido, L.J., Holonyak, N. Jr., Eu, V., Fend, M., and Burnham, R.D., Appl. Phys. Lett. 47, 903 (1985).CrossRefGoogle Scholar
5. Myers, D.R., Arnold, G.W., Zipperian, T.E., Dawson, L.R., Biefeld, R.M., Fritz, I.J., and Barnes, C.E., J. Appl. Phys. 60, 1131 (1986).CrossRefGoogle Scholar
6. Gavrilovic, P., Deppe, D.G., Meehan, K., Holionyak, N. Jr., Coleman, J.J., and Brunham, R.D., Appl. Phys. Lett. 47, 130 (1985).CrossRefGoogle Scholar
7. Hirayama, Y., Suzuki, Y., Tarucha, S., and Okamoto, H., Jpn. J. Appl. Phys. 24, L516 (1985).CrossRefGoogle Scholar
8. Tan, T.Y. and Goesele, U., J. Appl. Phys. 61, 1841 (1987).CrossRefGoogle Scholar
9. Cibert, J., Petroff, P.M., Werder, D.J., Pearton, S.J., Gossard, A.C., and English, J. H., Appl. Phys. Lett. 49, 223 (1986).CrossRefGoogle Scholar
10. Kash, K., Tell, B., Grabbe, P., Dobiaz, E.A., Craighead, H.G., and Tamargo, M.C., J. Appl. Phys. 63, 190 (1988).CrossRefGoogle Scholar
11. Konayashi, H., Fukunaga, T., Ishida, K., Nakashima, H., Flood, J.D., Bahir, G., and Merz, J. L., J. Appl. Phys. 50, 519 (1987).Google Scholar
12. Uematsu, M. and Yanagawa, F., Jpn. J. Appl. Phys. 26, L1407 (1987).CrossRefGoogle Scholar
13. Matsui, K., Takamori, T., Fukunaga, T., Narusawa, T., and Nakashima, H. H., Jpn. J. Appl. Phys. 26, 482 (1987).CrossRefGoogle Scholar
14. Kahan, K., Rajeswaren, G., and Lee, S.-T., Appl. Phys. Lett. 53, 1635 (1988)CrossRefGoogle Scholar
15. Venkatesan, T., Schwarz, S.A., Hwang, D.M., Bhat, R., Koza, M., Yoon, H.W., and Mei, P., Appl. Phys. Lett. 49, 701 (1986).CrossRefGoogle Scholar
16. Schwarz, S.A., Venkatesan, T., Hwang, D.M., Yoon, H.W., Bhat, R., and Arakawa, Y., Appl. Phys. Lett. 50, 281 (1987).CrossRefGoogle Scholar