Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T23:44:14.925Z Has data issue: false hasContentIssue false

Dislocation Nucleation and Growth in MOCVD GaN/AlN Films on Stepped and Step-free 4H-SiC Mesa Substrates

Published online by Cambridge University Press:  01 February 2011

Mark E. Twigg
Affiliation:
[email protected], Naval Research Laboratory, Code 6812, 4555 Overlook Ave., SW, Washington, DC, 20375, United States, (202) 404-8543, (202) 404-7194
Yoosuf N. Picard
Affiliation:
[email protected], NASA Glenn Research Center, Washington, DC, 20375, United States
Nabil D. Bassim
Affiliation:
[email protected], Naval Research Laboratory, Washington, DC, 20375, United States
Joshua D. Caldwell
Affiliation:
[email protected], Naval Research Laboratory, Washington, DC, 20375, United States
Michael A. Mastro
Affiliation:
[email protected], Naval Research Laboratory, Washington, DC, 20375, United States
Charles R. Eddy
Affiliation:
[email protected], Naval Research Laboratory, Washington, DC, 20375, United States
Richard L. Henry
Affiliation:
[email protected], Naval Research Laboratory, Washington, DC, 20375, United States
Ronald T. Holm
Affiliation:
[email protected], Naval Research Laboratory, Washington, DC, 20375, United States
Philip G. Neudeck
Affiliation:
[email protected], NASA Glenn Research Center, Cleveland, OH, 44315, United States
Andrew J. Trunek
Affiliation:
[email protected], OAI, Cleveland, OH, 44315, United States
J. Anthony Powell
Affiliation:
[email protected], Sest, Inc., Cleveland, OH, 44315, United States
Get access

Abstract

Using transmission electron microscopy, we have analyzed dislocations in AlN nucleation layers and GaN films grown by metallorganic chemical vapor deposition (MOCVD) on the (0001) surface of epitaxially-grown 4H-SiC mesas with and without steps. For 4H-SiC substrates free of SiC surface steps, half-loop nucleation and glide parallel to the AlN/SiC interfacial plane play the dominant role in strain relief, with no mechanism for generating threading dislocations. In contrast, 4H-SiC mesa surfaces with steps give rise to regions of high stress at the heteroepitaxial interface, thereby providing an environment conducive to the nucleation and growth of threading dislocations, which act to accommodate misfit strain by the tilting of threading edge dislocations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Matthews, J. W., J. Vac. Sci. Technol. 12 (1975) 126.Google Scholar
2. Eaglesham, D. J., Kvam, E. P., Maher, D. M., Humphreys, C. J., and Bean, J. C., Philos. Mag. A 59 (1989) 1059.Google Scholar
3. Cullis, A. G., Pidduck, A. J., and Emeny, M. T., Phys. Rev. Lett. 75 (1995) 2368.Google Scholar
4. Yamada, S., Kato, J., Tanaka, S., Suemune, I., Avramescu, A., Aoyagi, Y., Teraguchi, N., and Suzuki, A., Appl. Phys. Lett. 78 (2001) 3612.Google Scholar
5. Tanaka, S., Kern, R. S., and Davis, R. F., Appl. Phys. Lett. 66 (1995) 37.Google Scholar
6. Powell, J. A., Neudeck, P. G., Trunek, A. J., Beheim, G. M., Matus, L. G., Hoffman, R. W. Jr, and Keys, L. J., Appl. Phys. Lett. 77 (2000) 1449.Google Scholar
7. Neudeck, P. G. and Powell, J. A., in Silicon Carbide: Recent Major Advances, Edited by Choyke, W. J., Matsunami, H., and Pensl, G., Springer-Verlag, Heidelberg, 2003, p.179.Google Scholar
8. Koleske, D.D., Henry, R. L., Twigg, M. E., Culbertson, J. C., Binari, S. C., Wickenden, A. E., and Fatemi, M., Appl. Phys. Lett. 80 (2002) 4372.Google Scholar
9. Mastro, M.A., Eddy, C.R. Jr, Henry, R.L., Holm, R.T., Twigg, M.E., Bassim, N.D., Ancona, M., and Edwards, A., Solid State Electronics 49 (2005) 251.Google Scholar
10. Bassim, N. D., Twigg, M. E., Eddy, C. R. Jr, Henry, R. L., Holm, R. T., Culbertson, J. C., Stahlbush, R. E., Neudeck, P. G., Trunek, A. J., and Powell, J. A., Appl. Phys. Lett. 84 (2004) 5216.Google Scholar
11. Bassim, N. D., Twigg, M. E., Eddy, C. R. Jr, Culbertson, J. C., Mastro, M. A., Henry, R. L., Holm, R. T., Neudeck, P. G., Trunek, A. J., and Powell, J. A., Appl. Phys. Lett. 84 (2005) 021902.Google Scholar
12. Caldwell, J. D., Mastro, M.A., Hobart, K. D., Glembocki, O. J., Eddy, C.R. Jr, Bassim, N.D., Holm, R.T., Henry, R.L., Twigg, M.E., Kub, F., Pl Neudeck, G., Trunek, A. J., and Powell, A. J., Appl. Phys. Lett. 88 (2006) 263509.Google Scholar
13. Bassim, N.D., Twigg, M. E., Mastro, M.A., Neudeck, P.G., Eddy, C.R. Jr, Zega, T. J., Henry, R.L., Culbertson, J. C., Holm, R.T., Powell, J.A. and Trunek, A.J., “Dislocations in III-nitride films grown on 4H-SiC mesas with and without surface steps,” J. Cryst. Growth 304, 103 (2007).Google Scholar
14. Bassim, N.D., Twigg, M.E., Mastro, M.A., Neudeck, P.G., Eddy, C.R. Jr, Henry, R.L., Holm, R.T., Powell, J.A. and Trunek, A.J., Materials Science Forum 527-529 (2006) 1509.Google Scholar
15. Twigg, M. E., Bassim, N.D., Mastro, M.A., Neudeck, P.G., Eddy, C.R. Jr, Henry, R.L., Culbertson, J. C., Holm, R.T., Powell, J.A. and Trunek, A.J., J. Appl. Phys. 101, 053509 (2007).Google Scholar
16. Matthews, J. W., Blakeslee, A. E., and Mader, S., Thin Solid Films 33 (1976) 253.Google Scholar
17. Fischer, A., Kuhne, H., Lippert, G., Richter, H., and Tillack, B., Phys. Stat. Sol. (a) 171 475 (1999).Google Scholar
18. Cantu, P., Wu, F., Waltereit, P., Keller, S., Romanov, A. E., DenBaars, S. P., and Speck, J. S., J. Appl. Phys. 97 (2005) 103534.Google Scholar
19. Picard, Y. N., Twigg, M. E., Caldwell, J. D., Eddy, C. R. Jr, Neudeck, P. G., Trunek, A. J., and Powell, J. A., Appl. Phys. Lett. 90. 234101 (2007).Google Scholar
20. Picard, Y. N., Caldwell, J. D., Twigg, M. E., Mastro, M.A., Eddy, C.R., Jr., Henry, R.L., Holm, R.T., Neudeck, P.G., Trunek, A.J., and Powell, J.A. Appl. Phys. Lett. 91. 094106 (2007).Google Scholar