Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-06T08:20:34.695Z Has data issue: false hasContentIssue false

Dislocation Networks Strain Fields Induced By Si Wafer Bonding.

Published online by Cambridge University Press:  18 March 2011

J. Eymery
Affiliation:
CEA/Grenoble, Département de Recherche Fondamentale
F. Fournel
Affiliation:
LETI/Département des Technologies Silicium, 17 rue des martyrs, 38054 Grenoble Cedex 9, France
K. Rousseau
Affiliation:
CEA/Grenoble, Département de Recherche Fondamentale
D. Buttard
Affiliation:
CEA/Grenoble, Département de Recherche Fondamentale
F. Leroy
Affiliation:
CEA/Grenoble, Département de Recherche Fondamentale
F. Rieutord
Affiliation:
CEA/Grenoble, Département de Recherche Fondamentale
J.L. Rouvière
Affiliation:
CEA/Grenoble, Département de Recherche Fondamentale
Get access

Abstract

Buried dislocation superlattices are obtained by bonding ultra-thin single crystal Si (001) films on Si (001) wafers. The twist of two Si wafers induces a regular square grid of dissociated screw dislocations and the tilt a 1-D array of mixed dislocation. The Burgers vector is a/2 <110> for both types of dislocation. The atomic displacements and deformations of pure screw and edge dislocations are calculated with an isotropic elasticity approximation taking into account the free surface and the thickness of the upper crystal. It is shown by these calculations that the elastic strain field propagates up to the surface, and quantitative arguments are given to choose the network period / film thickness ratio.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Shiryaev, S. Yu., Jensen, F., Hansen, J. L., Petersen, J. W., and Larsen, A. N., Phys. Rev. Lett. 78, 503 (1997).Google Scholar
2. Fournel, F., Moriceau, H., Magnéa, N., Eymery, J., Rouvière, J. L., and Aspar, B., Mat. Sci. & Eng B 73, 42 (2000).Google Scholar
3. Bourret, A., Surf. Sci. 432, 37 (1999).Google Scholar
4. Romanov, A. E., Petroff, P. M., and Speck, J. S., Appl. Phys. Lett. 74, 2280 (1999).Google Scholar
5. Fournel, F., Rousseau, K., Eymery, J., Rouvière, J.L., Buttard, D., Magnea, N., Moriceau, H., Aspar, B., Mur, P., Martin, F., Semeria, M.N., MRS Fall meeting 2000 oral communication.Google Scholar
6. Rouvière, J.L., Rousseau, K., Fournel, F., and Moriceau, H., Appl. Phys. Lett. 77, 1135 (2000).Google Scholar
7. Eymery, J., Fournel, F., Moriceau, H., Rieutord, F., Buttard, D., and Aspar, B., Appl. Phys. Lett. 75, 3509 (1999).Google Scholar
8. Fournel, F., Moriceau, H., Magnea, N., Eymery, J., Buttard, D., Rouvière, J. L., Rousseau, K., and Aspar, B., Thin Solid Films 380, 10 (2000).Google Scholar
9. Tong, Q. Y. and Gösele, U., Semiconductor Wafer Bonding (Wiley, New York, 1999).Google Scholar
10. Champeney, D. C., Fourier Transforms And Their Physical Applications (Academic Press, London and New York 1973).Google Scholar
11. Bonnet, R. and Verger-Gaugry, J. L., Phil. Mag. A 66, 849 (1992).Google Scholar