Hostname: page-component-7bb8b95d7b-495rp Total loading time: 0 Render date: 2024-10-04T17:27:03.430Z Has data issue: false hasContentIssue false

Dislocation motion around loaded notches in ice single crystals

Published online by Cambridge University Press:  10 February 2011

D. Cullen
Affiliation:
Thayer School of Eng., Dartmouth College, Hanover, NH 03755
X. Hu
Affiliation:
Thayer School of Eng., Dartmouth College, Hanover, NH 03755
I. Baker
Affiliation:
Thayer School of Eng., Dartmouth College, Hanover, NH 03755
M. Dudley
Affiliation:
Dept. of Materials Science, SUNY at Stony Brook, Stony Brook, NY 11794
Get access

Abstract

Synchrotron X-ray topography has been used to study dislocation behavior around a notch in single crystal ice during in-situ deformation at a constant strain-rate of 1 × 10−8s−1 and a temperature of -8 °C. During deformation a dislocation depleted zone (DDZ) formed above the notch. Modeling the interaction between basal plane dislocation loops and the notch stress field suggested that this DDZ arose from dislocations gliding completely through the specimen.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kobayashi, S. and Ohr, S.M., Scripta Metall. 15, 343 (1981).10.1016/0036-9748(81)90357-4Google Scholar
2. Kobayashi, S. and Ohr, S.M., J. Mater. Sci. 19, 2273 (1984).10.1007/BF01058104Google Scholar
3. Luoh, T. and Chang, C.P., Acta. Mater. 44, 2683 (1996).10.1016/1359-6454(95)00400-9Google Scholar
4. Horton, J.A. and Ohr, S.M., J. Mater. Sci. 17, 3140 (1982).10.1007/BF01203476Google Scholar
5. Ohr, S.M, Mater. Sci. Eng. 72, 1501 (1985).10.1016/0025-5416(85)90064-3Google Scholar
6. Ohr, S.M., Saka, H., Zhu, Y., and Imura, T., Phil. Mag. A 57, 677 (1988).10.1080/01418618808214417Google Scholar
7. Wei, Y., and Dempsey, J.P., Mechanics of Creep Brittle Materials, vol. 2, Cocks, A. C. F. and Ponter, A. R. S. eds. (Barking Essex: Elsevier Applied Science, 1991) p. 62.10.1007/978-94-011-3688-4_6Google Scholar
8. Wei, Y., and Dempsey, J.P., Scripta Metall. 32, 949 (1995).10.1016/0956-716X(94)00005-3Google Scholar
9. Ashby, M.F. and Embury, J.D, Script. Met. 19, 557 (1985).10.1016/0036-9748(85)90134-6Google Scholar
10. Hu, X., Jia, K., Liu, F., Baker, I., and Black, D., Applications of Synchrotron Radiation Techniques to Material Science II, ed. by Terminello, L. J., Shinn, N. D., Ice, G. E., D'amico, K. L., and Perry, D. L., Proc. Mater. Res. Soc. (Pennsylvania: Materials Research Society, 1995) 375, p. 287.Google Scholar
11. Shearwood, C., Ohtomo, M., and Whitworth, R.W., Nature 319. 659 (1986).Google Scholar
12. Shearwood, C., and Whitworth, R.W., Phil. Mag. A 64, 289 (1991).10.1080/01418619108221186Google Scholar
13. Liu, F., Ph.D. Thesis, Dartmouth College, Hanover, NH (1992).Google Scholar
14. Jia, K., 1994, M.S. Thesis, Dartmouth College, Hanover, NH (1994).Google Scholar
15. Cole, D.M., private communication, U.S. Army, CRREL, Hanover, NH (1999).Google Scholar
16. Fukuda, A. and Higashi, A., Crystal Lattice Defects 4, 203 (1973).Google Scholar
17. Mai, C., Comptes Rendus Hebdomadaies des Seauces de l'Academic des Sciences (Paris), Ser. B, Tom. 283 (22), 515 (1976).Google Scholar
18. Perez, J., Mai, C., and Vassoille, R., J. Glaciology 21 (85), 361 (1978).10.1017/S0022143000033530Google Scholar