Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T15:40:39.417Z Has data issue: false hasContentIssue false

Dislocation Locking by Intrinsic Point Defects in Silicon

Published online by Cambridge University Press:  18 March 2011

Igor V. Peidous
Affiliation:
R&D Department, Dallas Semiconductor Corporation, Dallas, TX
Konstantin V. Loiko
Affiliation:
R&D Department, Dallas Semiconductor Corporation, Dallas, TX
Dale A. Simpson
Affiliation:
R&D Department, Dallas Semiconductor Corporation, Dallas, TX
Tony La
Affiliation:
R&D Department, Dallas Semiconductor Corporation, Dallas, TX
William R. Frensley
Affiliation:
Department of Electrical Engineering, University of Texas at Dallas, Richardson, TX
Get access

Abstract

Dislocation pileups with abnormally weak inter-dislocation repulsion have been observed in locally oxidized silicon structures. To verify if this could be attributed to elastic interaction of dislocations with intrinsic point defects, distributions of self-interstitials in dislocation stress fields have been studied using theoretical calculations and computer simulations. According to the obtained results, self-interstitials can form atmospheres about dislocations causing dislocation stress reduction and therefore screening of dislocations from interaction with external stresses. This may represent an additional mechanism of dislocation locking in silicon alternative to oxygen pinning.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hu, S. M. and Patrick, W. J., J. Appl. Phys. 46, 1869 (1975).Google Scholar
2. Hu, S. M., Appl. Phys. Letters, 31, 53 (1977).Google Scholar
3. Senkader, S., Jurkschat, K., Wilshaw, P. R., Falster, R., in Defects in Silicon III, Edited by Abe, T., Bullis, W. M., Kobayashi, S., Lin, W., Wagner, P., (Electrochem. Soc. Proc. PV 99–1, Pennington, NJ, 1999) pp. 280289.Google Scholar
4. Akatsuka, M., Sueoka, K., Katahama, H., Morimoto, N. and Adachi, N., Jpn. J. Appl. Phys., Part 2, 36, L1422 (1998)Google Scholar
5. Haynes, T. E., MRS Bulletin, 25, 14 (2000).Google Scholar
6. Hirth, J. P., Lothe, J., Theory of Dislocations, (McGraw-Hill, New York, 1968) pp. 456, 633.Google Scholar
7. Peidous, I. V. and Loiko, K. V., in High Purity Silicon VI, Edited by Claeys, C. L., Rai-Choudhury, P., Watanabe, M., Stallhofer, P., Dawson, H. J., (Electrochem. Soc. Proc. PV 2000 – 17, Pennington, NJ, 2000) pp. 145155.Google Scholar
8. Landau, L. D., Lifshitz, E. M., Theory of Elasticity, (Butterworth-Heinemann, Oxford, 1997) p. 19.Google Scholar
9. TSUPREM-4 User's Manual, Version 2000.4, Avant! Corporation, (Fremont, CA, December 2000).Google Scholar
10. Hu, S. M., Appl. Phys. Lett., 31, 139 (1977).Google Scholar
11. Peidous, I. V., C.H.Gan, Sundaresan, R., Lahiri, S. K., in High Purity Silicon V, Edited by Claeys, C. L., Rai-Choudhury, P., Watanabe, M., Stallhofer, P., Dawson, H. J., (Electrochem. Soc. Proc. PV 98–13, Pennington, NJ, 1998) pp. 272281.Google Scholar
12. Park, H., Jones, K. S., Slinkman, J. A., Law, M. E., J. Appl. Phys., 78, 3664 (1995).Google Scholar
13. Huang, R. Y. S. and Dutton, R. W., J. Appl. Phys., 74, 5821 (1993).Google Scholar
14. Shimizu, H., Isomae, S., Minowa, K., Sotoh, T., Suzuki, T., J. Electrochem. Soc., 145, 2523 (1998).Google Scholar