Hostname: page-component-68945f75b7-7r68w Total loading time: 0 Render date: 2024-09-04T08:30:27.805Z Has data issue: false hasContentIssue false

Dislocation Distribution in Graded Composition IngaAs Layers

Published online by Cambridge University Press:  22 February 2011

S.I. Molina
Affiliation:
Dep. de Ciencia de los Materiales, Ingeniería Metalírgica y Química Inorgánica, Univ. de Cádiz, Apdo. 40 11510 Puerto Real (Cádiz), Spain
G. Gutiérrez
Affiliation:
Dep. de Ingeniería Electrónica, Univ. Politécnica de Madrid, Ciudad Univ. 28040 Madrid, Spain
A. Sacedón
Affiliation:
Dep. de Ingeniería Electrónica, Univ. Politécnica de Madrid, Ciudad Univ. 28040 Madrid, Spain
E. Calleja
Affiliation:
Dep. de Ingeniería Electrónica, Univ. Politécnica de Madrid, Ciudad Univ. 28040 Madrid, Spain
R. García
Affiliation:
Dep. de Ciencia de los Materiales, Ingeniería Metalírgica y Química Inorgánica, Univ. de Cádiz, Apdo. 40 11510 Puerto Real (Cádiz), Spain
Get access

Extract

The defect distribution of a graded composition InGaAs layer grown on GaAs by MBE has been characterized by TEM (XTEM, PVTEM, HREM). The observed configuration does not correspond completely with that theoretically predicted. Dislocation misfit segments are in a quantity much bigger than in constant composition layers. Dislocation density is quite uniform up to a certain layer thickness t1. Few dislocations are observed between this t1 thickness and a larger thickness t2. Dislocation density is below the detection limit of XTEM for thicknesses bigger than t2. Some dislocations are observed to penetrate in the GaAs substrate.

Several mechanisms (reactions between 600 dislocations, Hagen-Strunk and modified Frank-Read processes) are proposed to explain the interactions of dislocations in the epilayer and their penetration in the substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Abrahams, M.S., Weisberg, L.R., Buiocchi, C.J. and Blanc, J., J. Mat. Sci. 4, 233 (1969).Google Scholar
2 Abrahams, M.S., Buiocchi, C.J. and Olsen, G.H., J. Appl. Phys. 46(10), 4259 (1975).Google Scholar
3 J.Chang, C.P., Chen, J., Fernandez, J.M., Wieder, H.H. and Kavanagh, K.L., Appl. Phys. Lett. 60 (9), 129 (1992).Google Scholar
4 LeGoues, F.K., Meyerson, B.S., Morar, J.F. and Kirchner, P.D., J.Appl.Phys. 71,4230(1992).Google Scholar
5 LeGoues, F.K., Meyerson, B.S. y Morar, J.F., Phys. Rev. Lett. 66, 2903 (1991).Google Scholar
6 Fitzgerald, E.A., Xie, Y.H., Green, M.L., Brasen, D., Kortan, A.R., Michel, J., Mii, Y.J. y Weir, B.E., Appl. Phys. Lett. 59, 811 (1991).Google Scholar
7 Tersoff, J., Appl. Phys. Lett. 62(7), 693 (1993).Google Scholar
8 Maier, M. (private communication).Google Scholar
9 Hagen, W. and Strunk, H., Appl. Phys. 17, 85 (1978).CrossRefGoogle Scholar