Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-04T19:35:07.109Z Has data issue: false hasContentIssue false

Dislocation Defect States in Deformed Silicon

Published online by Cambridge University Press:  15 February 2011

J. R. Patel
Affiliation:
Bell Laboratories, Murray Hill, N. J. 07974, USA
L. C. Kimerling
Affiliation:
Bell Laboratories, Murray Hill, N. J. 07974, USA
Get access

Abstract

Transient junction capacitance measurements on deformed silicon reveal a variety of states after deformation. Upon annealing or following more homogeneous deformation the defect spectrum shows a single broad feature. A state at E(0.38) has been tentatively assigned to defect sites along the dislocation. A broad band of states at H(0.35) is postulated to represent states due to the reconstructed dislocation core.

Type
Research Article
Copyright
Copyright © Materials Research Society 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Read, W. T., Philos. Mag. 45, 775 (1954);CrossRefGoogle Scholar
45, 1119 (1954);Google Scholar
46, 111 (1955).Google Scholar
2. Schockley, W., Phys. Rev 91, 228 (1953).Google Scholar
3. Logan, R. A., Pearson, G. L. and Kleinman, D., J. Appl. Phys. 30, 885 (1959).CrossRefGoogle Scholar
4. Haasen, P. and Schröter, W., “Fundamentals of Dislocation Theory” Simmons, J. A. et al. Eds. (Nat. Bur. Stand. (US) Spec. Publ. 317, II 1970) p. 1231.Google Scholar
5. Labusch, R. and Schröter, W., “Lattice Defects in Semiconductors” Conference Series No. 23, (Inst. of Physics, London) 56, (1975).Google Scholar
6. Grazhulis, V. A., Kveder Yu, V. V. Mukhina, V., Phys. Stat. Sol. (a) 43, 407 (1977);CrossRefGoogle Scholar
44, 107 (1977).Google Scholar
7. Wosinski, T. and Figielski, T., Phys, Stat. Sol. (b) 83, K57 (1976)Google Scholar
see also. review by Figielski, T., J. de Physique, Colloque C6, 40, 95 (1979).Google Scholar
8. Lepine, D., Grazhulis, V. A., Kaplan, D., Physics of Semicond., Int. Conf. Rome 1081 (1976).Google Scholar
9. Kimerling, L. C. and Patel, J. R., Appl. Phys. Lett. 38, 73 (1979).CrossRefGoogle Scholar
10. Patel, J. R. and Kimerling, L. C., J. de Physique, Colloque C6, 40, 67 (1979).Google Scholar
11. Miller, G. L., Lang, D. and Kimerling, L. C., Annu. Rev. Mat. Sci. 7, 377 (1977).CrossRefGoogle Scholar
12. Wohler, F. D., Alexander, H. and Sander, W., J. Phys. Chem. Solids, 31, 1381 (1969).Google Scholar
13. Figielski, T., Sol. St. Electr. 21, 1403 (1978).CrossRefGoogle Scholar
14. Skielko, W., Breitenstein, O. and Pickenheim, R., Symposium on Defect Induced Phenomena in Semiconductors Krynica, Poland (1980).Google Scholar
15. Hirsch, P. B., J. de Physique Colloque C6 40, 27, (1979).Google Scholar
16. Weber, E. and Alexander, H., J. de Physique Colloque C6 40, 101 (1979).Google Scholar
17. Erdmann, R. and Alexander, H. to be published Phys. Stat. Sol. (1980).Google Scholar
18. Schröter, W., J. de Physique, Colloque C6 40, 51 (1979).Google Scholar
19. Patel, J. R., Testardi, L. R. and Freeland, P. E., Phys. Rev. B 13 3548 (1977).CrossRefGoogle Scholar