Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T01:32:17.388Z Has data issue: false hasContentIssue false

Discovery of γ-B28, a Novel Boron Allotrope with Partially Ionic Bonding

Published online by Cambridge University Press:  14 March 2011

Artem R. Oganov*
Affiliation:
Department of Geosciences, Department of Physics and Astronomy, and New York Center for Computational Sciences, Stony Brook University, Stony Brook, New York 11794-2100, USA Geology Department, Moscow State University, 119992 Moscow, Russia
Get access

Abstract

γ-B28 is a recently discovered high-pressure phase of boron, with the structure consisting f icosahedral B12 clusters and B2 pairs in a NaCl-type arrangement: (B2)δ+(B12)δ-, and displaying a significant charge transfer δ~0.48. Boron is the only light element, for which the phase diagram has become clear only a few years ago, with the discovery of γ-B28, and this phase diagram is discussed here among other recent findings. γ-B28 was first experimentally obtained as a pure boron allotrope in early 2004 by J.H. Chen and V.L. Solozhenko (although a similar diffraction pattern was published in a 1965 by R.H. Wentorf, in a paper that until recently was believed to be wrong) and its unique structure was discovered by A.R. Oganov in 2006 with the use of the ab initio evolutionary algorithm USPEX (Oganov & Glass, 2006) and later confirmed by other studies. This allotrope, thermodynamically stable at high pressures, is shown to be also quenchable and dynamically stable upon decompression to 1 atm, and we show its phonon dispersion curves. Present discussion includes also the relative stability of other boron allotropes as a function of pressure. We also discuss more recent publications on the putative isosymmetric phase transition in γ-B28 and the nature of chemical bonding in it. We demonstrate that a qualitative difference in the evolution of the band gap of γ-B28 and the related α-B12 structure, which is due to the partial ionicity of γ-B28.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Douglas, B.E., Ho, S.-M., Structure and Chemistry of Crystalline Solids (Springer, N.Y., 2006).Google Scholar
2. Amberger, E., Ploog, K. (1971). Bildung der Gitter des Reinen Bors. J. Less-Common Metals 23, 2131.Google Scholar
3. Sanz, D.N., Loubeyre, P., Mezouar, M. (2002). Equation of state and pressure induced amorphization of beta-boron from X-ray measurements up to 100 GPa. Phys. Rev. Lett. 89, 245501.Google Scholar
4. Segall, D.E., Arias, T.A. (2003). Ab initio approach for high-pressure systems with application to high-pressure phases of boron: Perturbative momentum-space potentials. Phys. Rev. B67, 064105.Google Scholar
5. Haussermann, U., Simak, S.I., Ahuja, R., Johansson, B. (2003). Metal-nonmetal transition in the boron group elements. Phys. Rev. Lett., 90, 065701.Google Scholar
6. Eremets, M.I., Struzhkin, V.W., Mao, H.K., Hemley, R.J. (2001). Superconductivity in boron. Science 293, 272274.Google Scholar
7. Oganov, A.R., Chen, J., Gatti, C., Ma, Y.-M., Yu, T., Liu, Z., Glass, C.W., Ma, Y.-Z., Kurakevych, O.O., Solozhenko, V.L. (2009). Ionic high-pressure form of elemental boron. Nature 457, 863867.Google Scholar
8. Solozhenko, V.L., Kurakevych, O.O., Oganov, A.R. (2008). On the hardness of a new boron phase, orthorhombic γ-B28 . J. Superhard Mater. 30, 428429.Google Scholar
9. Oganov, A.R., Solozhenko, V.L. (2009). Boron: a hunt for superhard polymorphs. J. Superhard Materials 31, 285291.Google Scholar
10. Wentorf, R. H. Jr. (1965). Boron: another form. Science 147, 4950.Google Scholar
11. Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y. & Akimitsu, J. (2001) Superconductivity at 39 K in magnesium diboride. Nature 410, 6364.Google Scholar
12. Ma, Y., Wang, Y., Oganov, A.R. (2009). Absence of superconductivity in the novel high-pressure polymorph of MgB2 . Phys. Rev. B79, 054101.Google Scholar
13. Ma, Y.Z., Prewitt, C.T., Zou, G.T., Mao, H.K., Hemley, R.J. (2003). High-pressure high-temperature x-ray diffraction of beta-boron to 30 GPa. Phys. Rev. B67, 174116.Google Scholar
14. van Setten, M.J., Uijttewaal, M.A., de Wijs, G.A., de Groot, R.A. (2007). Thermodynamic stability of boron: The role of defects and zero point motion. J. Am. Chem. Soc. 129, 24582465.Google Scholar
15. Widom, M., Mikhalkovic, M. (2008). Symmetry-broken crystal structure of elemental boron at low temperature. Phys. Rev. B77, 064113.Google Scholar
16. Ogitsu, T., Gygi, F., Reed, J., Motome, Y., Schwegler, E., Galli, G. (2009). Imperfect crystal and unusual semiconductor: Boron, a frustrated element. J. Am. Chem. Soc. 131, 19031909.Google Scholar
17. Oganov, A.R., Glass, C.W. (2006). Crystal structure prediction using ab initio evolutionary techniques: principles and applications. J. Chem. Phys. 124, 244704.Google Scholar
18. Will, G., Kiefer, B. (2001). Electron deformation density in alpha-boron. Z. Anorg. Allg. Chem. 627, 21002104.Google Scholar
19. Gabunia, D., Tsagareishvili, O., Darsavelidze, G., Lezhava, G., Antadze, M., and Gabunia, L. (2004). Preparation, structure and some properties of boron crystals with different content of 10B and 11B isotopes. J. Solid State Chem. 177, 600604.Google Scholar
20. Amberger, E., Stumpf, W. (1981). Gmelin Handbook of Inorganic Chemistry., Springer-Verlag: Berlin. 1960, pp. 112238.Google Scholar
21. McMahon, M.I., Nelmes, R.J. (2006). High-pressure structures and phase transformations in elemental metals. Chem. Soc. Rev. 35, 943963.Google Scholar
22. Bader, R.F.W. (1990). Atoms in Molecules. A Quantum Theory (Oxford University Press, Oxford), 438 pp.Google Scholar
23. Edwards, B., Ashcroft, N.W. (1997). Spontaneous polarization in dense hydrogen. Nature 388, 652655.Google Scholar
24. Wells, A.F. (1986). Structural Inorganic Chemistry (Clarendon Press, Oxford).Google Scholar
25. Hayami, W. (1999). Theoretical study of the stability of AB12 (A = H-Ne) icosahedral clusters. Phys. Rev. B60, 15231526.Google Scholar
26. Werheit, H., Luax, M., Kuhlmann, U. (1993). Interband and gap state related transitions in β-rhombohedral boron. Phys. Status Solidi B 176, 415432.Google Scholar
27. Tsagareishvili, O.A., Chkhartishvili, L.S., Gabunia, D.L. (2009). Apparent low-frequency charge capacitance of semiconducting boron. Semiconductors 43, 1420.Google Scholar
28. Ma, Y.M., Tse, J.S., Klug, D.D., Ahuja, R. (2004). Electron-phonon coupling of α-Ga boron. Phys. Rev. B70, 214107.Google Scholar
29. Brazhkin, V.V., Taniguchi, T., Akaishi, M., Popova, S.V. (2004). Fabrication of β-boron by chemical-reaction and melt-quenching methods at high pressures. J. Mater. Res. 19, 16431648.Google Scholar
30. Le Godec, Y., Kurakevych, O.O., Munsch, P., Garbarino, G., Solozhenko, V.L. (2009). Equation of state of orthorhombic boron, γ-B28 . Solid State Comm., 149, 13561358.Google Scholar
31. Zarechnaya, E.Y., Dubrovinsky, L., Dubrovinskaia, N., Filinchuk, Y., Chernyshov, D., Dmitriev, V., Miyajima, N., El Goresy, A., Braun, H.F., Vansmaalen, S., Kantor, I., Kantor, A., Prakapenka, V., Hanfland, M., Mikhailushkin, A.S., Abrikosov, I.A., Simak, S.I. (2009). Superhard semiconducting optically transparent high pressure phase of boron. Phys. Rev. Lett. 102, 185501.Google Scholar
32. Zarechnaya, E.Y., Dubrovinsky, L., Dubrovinskaia, N., Miyajima, N., Filinchuk, Y., Chernyshov, D., Dmitriev, V. (2008). Synthesis of an orthorhombic high pressure boron phase. Sci. Tech. Adv. Mat. 9, 044209.Google Scholar
33. Jiang, C., Lin, Z., Zhang, J., Zhao, Y. (2009). First-principles prediction of mechanical properties of gamma-boron. Appl. Phys. Lett., 94, 191906.Google Scholar
34. Oganov, A.R., Solozhenko, V.L., Kurakevzch, O.O., Gatti, C., Ma, Y.M., Chen, J., Liu, Z., Hemley, R.J. (2009). Comment on ‘Superhard Semiconducting Optically Transparent High Pressure Phase of Boron’. http://arxiv.org/abs/0908.2126.Google Scholar
35. Rulis, P., Wang, L., Ching, W.Y. (2009). Prediction of γ-B28 ELNES with comparison to α-B12 . Phys. Stat. Sol. (RRL) 3, 133135.Google Scholar
36. Zarechnaya, E., Dubrovinskaia, N., Caracas, R., Merlini, M., Hanfland, M., Filinchuk, Y., Chernyshov, D., Dmitriev, V., Dubrovinsky, L. (2010). Pressure-induced isostructural phase transformation in γ-B28 . Phys. Rev. B82, 184111.Google Scholar
37. Christy, A.G. (1995). Isosymmetric Structural Phase Transitions: Phenomenology and Examples. Acta Cryst. B51, 753757.Google Scholar
38. Haussermann, U., Milhaylushkin, A.S. (2010). Structure and Bonding of γ-B28: Is the High Pressure Form of Elemental Boron Ionic? Inorg. Chem. 49, 1127011275.Google Scholar
39. Brown, I.D. (1992). Chemical and steric constraints in inorganic solids. Acta Cryst. B48, 553572.Google Scholar