Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-27T02:31:23.908Z Has data issue: false hasContentIssue false

Direct Patterning of Hydrogenated Amorphous Silicon by Near Field Scanning Optical Microscopy

Published online by Cambridge University Press:  10 February 2011

Russell E. Hollingsworth
Affiliation:
Materials Research Group, Inc.Wheat Ridge, CO
William C. Bradford
Affiliation:
Physics Department, Colorado School of Mines, Golden, CO
Mary K. Herndon
Affiliation:
Physics Department, Colorado School of Mines, Golden, CO
Joseph D. Beach
Affiliation:
Physics Department, Colorado School of Mines, Golden, CO
Reuben T. Collins
Affiliation:
Physics Department, Colorado School of Mines, Golden, CO
Get access

Abstract

Practical methods for directly patterning hydrogenated amorphous silicon (a-Si:H) films have been developed. Direct patterning involves selectively oxidizing the hydrogen passivated aSi:H surface, with the oxide then serving as an etch mask for subsequent hydrogen plasma removal of the unoxidized regions. Photo induced oxidation has been extensively studied using both far field projected patterns and near field scanning optical microscopy (NSOM) for direct write patterning. Examination of the threshold dose for pattern generation for excitation wavelengths from 248 to 633nm provides indirect evidence for involvement of electron-hole recombination in optically induced oxidation. Optical exposure of a-Si:H in vacuum demonstrated that oxygen must be present in the ambient atmosphere during exposure for successful pattern generation. This suggests that oxidation of the surface may not involve removal of hydrogen, but rather breaking of Si-Si backbonds and insertion of oxygen. An additional mechanism for oxide generation was observed whereby pattern generation resulted from simple proximity of an NSOM probe within ∼30nm from the sample surface. The probe dither amplitude was found to greatly affect the line width and height of patterns generated without light. Line widths of approximately 100nm, comparable to the probe diameter, were obtained.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 McCord, M. A. and Pease, R. F. P., J. Vac. Sci. Technol. B 4, 86 (1986); M. A. McCord and R. F. P. Pease, J. Vac. Sci. Technol. B 6, 293 (1988).Google Scholar
2 Abeln, G. C., Lee, S. Y., Lyding, J. W., Thompson, D. S., and Moore, J. S., Appl. Phys. Lett. 70, 2747 (1997).Google Scholar
3 Dagata, J. A., Schneir, J., Harary, H. H., Evans, C. J., Posek, M. T., and Bennett, J., Appl. Phys. Lett. 56, 2001 (1990); J. Sugimura and N. Nakagiri, Appl. Phys. Lett. 66, 1430 (1995); T.-C. Shen, C. Wang, J. W. Lyding, and J. R. Tucker, Appl. Phys. Lett. 66, 976 (1995).Google Scholar
4 Magno, R. and Bennett, B. R., Appl. Phys. Lett. 70, 1855 (1997).Google Scholar
5 , Matsumoto, Ishii, M., Segawa, K., Oka, Y., Vartanian, B. J., and Harris, J. S., Appl. Phys. Lett. 68, 34 (1996).Google Scholar
6 Minne, S. C., Soh, H. T., Flueckiger, Ph., and Quate, C. F., Appl. Phys. Lett. 66, 703 (1995).Google Scholar
7 Campbell, P.M., Snow, E. S., and McMarr, P. J., Appl. Phys. Lett. 66, 1388 (1995).Google Scholar
8 Kramer, N., Birk, H., Jorritsma, J., and Schonenberger, C., Appl. Phys. Lett. 66, 1325 (1995); N. Kramer, J. Jorritsma, H. Birk, and C. Schonenberger, J. Vac. Sci. Technol. B 13, 805 (1995).Google Scholar
9 Minne, S. C., Flueckiger, Ph., Soh, H. T., and Quate, C. F., J. Vac. Sci. Technol. B 13, 1380 (1995); S. C. Minne, S. R. Manalis, A. Atalar, and C. F. Quate, J. Vac. Sci. Technol. B 14, 2456 (1996).Google Scholar
10 Smolyaninov, Igor, Mazzoni, D. L., and Davis, C. C., Appl. Phys. Lett 67, 3859 (1995).Google Scholar
11 Davy, S. and Spajer, M., Appl. Phys. Lett. 69, 3306 (1996).Google Scholar
12 Massanell, j., Garcia, N., and Zlatkin, A., Opt. Lett. 21, 12 (1996).Google Scholar
13 Madsen, S., Mullenborn, M.., Birkelund, K., and Grey, F., Appl. Phys. Lett. 69, 544 (1996).Google Scholar
14 Betzig, E., Finn, P.L., and Weiner, J. S., Appl Phys. Lett. 60, 2484(1992).Google Scholar
15 Hollingsworth, Russell E., Herndon, Mary K., Collins, Reuben T., Benson, J.D., Dinan, J.H., and Johnson, J.N. in Amorphous and Heterogeneous Silicon Thin Films: Fundamentals to Devices-1999, edited by Branz, Howard m., Collins, Robert W., Okamoto, Hiroaki, Guha, Subhenda, and Schropp, Ruud (Mater. Res. Soc. Proc. 557, Pittsburg, PA, 1999) pp. 821826.Google Scholar
16 Hollingsworth, R.E., DeHart, C., Wang, Li, Johnson, J.N., Benson, J.D., and Dinan, J.H., J. Electronic Mat. 27, 689 (1998).Google Scholar
17 Herndon, M.K., Collins, R.T., Hollingsworth, R.E., Larson, P.R., and Johnson, M.B., Appl. Phys. Lett. 74, 141 (1999).Google Scholar
18 Hollingsworth, R.E., DeHart, C., Wang, Li, Dinan, J.H., and Johnson, J.N in Amorphous and Microcrystalline Silicon Technology-1997, edited by Wagner, Sigurd, Hack, Michael, Schiff, Eric A., Schropp, Ruud, Shimizu, Isamu (Mater. Res. Soc. Proc. 467, Pittsburg, PA, 1997) pp. 961966.Google Scholar
19 Hollingsworth, R.E., DeHart, C., Wang, Li, Johnson, J.N., Benson, J.D. and Dinan, J.H., J. Electron. Mat. 27, 689 (1998).Google Scholar
20 Niwano, Micio, Kageyama, Jun-ichi, Kurita, Kazunari, Kinashi, Koji, Takahashi, Isao, and Miyamoto, Mobuo, J. Appl. Phys. 76, 2157 (1994).Google Scholar
21 Fritzsche, H. in Amorphous and Microcrystalline Silicon Technology-1997, edited by Wagner, Sigurd, Hack, Michael, Schiff, Eric A., Schropp, Ruud, Shimizu, Isamu (Mater. Res. Soc. Proc. 467, Pittsburg, PA, 1997) pp. 1930.Google Scholar
22 Westlake, W. and Heintze, M., J. Appl. Phys. 77, 879 (1995).Google Scholar
23 , Betzig and Trautman, J.K., Science 257, 189(1992).Google Scholar
24 Hoffmann, P., Dutoit, B., and Salathe, R-P., Ultramicroscopy 61, 165(1995).Google Scholar
25 Saiki, T., Mononobe, S., Ohtsu, M., and Kusano, J., Appl Phys. Lett. 68, 2612(1996).Google Scholar
26 Valaskovic, G.A., Holton, M., and Morrison, G.H., Appl. Opt. 34, 1215(1995).Google Scholar
27 Islam, M. N., Zhao, X. K., Said, A. A., Mickel, S. S., and Vail, C. F., Appl. Phys. Lett 71, 2886(1997).Google Scholar
28 Yamammoto, y., Kourogi, M, Ohtsu, M., Polonski, V., and Lee, G. H., Appl. Lett. 76, 2173 (2000).Google Scholar
29 Sayah, A., Pilipona, C., Lambelet, P., Pfeffer, M., Marquis-Weible, F., Ultramicroscopy 71, 59(1998).Google Scholar
30 Karrai, K. and Grober, R.D., Appl. Phys. Lett. 66,1842(1995).Google Scholar