Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T07:30:34.153Z Has data issue: false hasContentIssue false

Direct Observations Of Atomic Structures Of Defects In Gan By High Resolution Z-Contrast Stem

Published online by Cambridge University Press:  10 February 2011

Y. Xin
Affiliation:
Department of Physics, University of Illinois at Chicago, Chicago. IL 60607-7059, USA Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37381-6031, USA
S.J. Pennycook
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, TN 37381-6031, USA
N.D. Browning
Affiliation:
Department of Physics, University of Illinois at Chicago, Chicago. IL 60607-7059, USA
P. D. Nellist
Affiliation:
Cavendish Laboratory, Cambridge University, Madingley Road, Cambridge CB3 0HE,UK
S. Sivananthan
Affiliation:
Department of Physics, University of Illinois at Chicago, Chicago. IL 60607-7059, USA
B. Beaumont
Affiliation:
CRHEA-CNRS, rue Bernard Gregory, 06560 Valbonne, France.
J-P Fauriel
Affiliation:
Department of Physics, University of Illinois at Chicago, Chicago. IL 60607-7059, USA CRHEA-CNRS, rue Bernard Gregory, 06560 Valbonne, France.
P. Gibart
Affiliation:
CRHEA-CNRS, rue Bernard Gregory, 06560 Valbonne, France.
Get access

Abstract

GaN/(0001)Sapphire grown by low pressure MOVPE is studied by high resolution Z-contrast imaging using STEM. First direct observation of the threading dislocation with edge character shows the atomic core structure, which appears to have a similar configuration to the {10–10} surface. The surfaces of the nanopipe walls are on {10–10} with the terminating layer between the atoms with one bond per pair. In addition, the high resolution Z-contrast image of the prismatic stacking fault confirms the results by conventional HRTEM.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Nakamura, S., Mukai, T. and Senoh, M., Jpn. J. Aool. Phys. 30, p. L1998 (1991).10.1143/JJAP.30.L1998Google Scholar
2. Lester, S.D., Ponce, F.A., Craford, M.G., and Steigerwald, D.A., Appl. Phys. Lett.,66, p. 1249 (1995).Google Scholar
3. Vennegues, P., Beaumont, B., Vaille, M. and Gibart, P., J. Crystal Growth, 173, p. 249 (1997).10.1016/S0022-0248(96)01050-0Google Scholar
4. Pennycook, S.J., Browning, N.D., Jessen, D.E., Chisholm, M.F. and McGibbon, A.J., Appl. Phys. A57, p. 385 (1993).10.1007/BF00331776Google Scholar
5. Serdlov, B.N., Martin, G.A., Morkoc, H. and Smith, D.J., Appl. Phys. Lett., 67, p. 2063 (1995)10.1063/1.115079Google Scholar
6. Romano, L.T., Northrup, J.E., O‘Keefe, M.A., Appl. Phys. Lett., 69, p. 2394 (1996).10.1063/1.117648Google Scholar
7. Xin, Y., Brown, P.D., Humphreys, C.J., Cheng, T.S. and Foxon, C.T., Appl. Phys. Lett., 70, p. 1308 (1997).10.1063/1.118520Google Scholar
8. Natusch, M.K.H., Botton, G., Broom, R., Brown, P.D., Tricker, D. and Humphreys, C.J., this proceeding.Google Scholar
9. McGibbon, A.J., Pennycook, S.J. and Angelo, J.E., Science, 269, p. 519 (1995).Google Scholar
10. Northrup, J.E. and Neugebauer, J., Phys. Rev., B53, p. R10477 (1996).Google Scholar
11. Eisner, J., Jones, R., Sitch, P.K., Porezag, V.D., Elstner, M., Frauenheim, Th., Heggie, M.I., Oberg, S. and Briddon, P.R., Phys. Rev. Lett., 79, p. 3672 (1997).10.1103/PhysRevLett.79.3672Google Scholar
12. Xin, Y., Pennycook, S.J., Browning, N.D., Nellist, P. D., Sivananthan, S., Faurie, J-P and Gibart, P., submitted to Appl. Phys. Lett.Google Scholar