Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-03T01:09:24.501Z Has data issue: false hasContentIssue false

Direct Observation of Intermixing in GAAS/AIAS Multilayers After Very Low-Dose Ion-Implantation

Published online by Cambridge University Press:  25 February 2011

M. Bode
Affiliation:
AT&T Bell Labs, Holmdel, NJ 07733
A. Ourmazd
Affiliation:
AT&T Bell Labs, Holmdel, NJ 07733
J.A. Rentschler
Affiliation:
AT&T Bell Labs, Holmdel, NJ 07733
M. Hong
Affiliation:
AT&T Bell Labs, Holmdel, NJ 07733
L.C. Feldman
Affiliation:
AT&T Bell Labs, Holmdel, NJ 07733
J.P. Mannaerts
Affiliation:
AT&T Bell Labs, Murray Hill, NJ 07974
Get access

Abstract

We combine chemical lattice imaging and digital vector pattern recognition to study quantitatively, kinetic intermixing in GaAs/AlAs multilayers. We thus obtain, with atomic plane resolution and near-atomic sensitivity, composition profiles across each interface of a multilayer stack before and after ion-implantation. Our results show significant intermixing even when only one 320 keV Ga+ ion is implanted at 77 K into each 2000 A2 area of the interface. This corresponds to an incident ion dose of 5×l012/cm2.

The intermixing is not uniform along the interface. At each interface, we observe more intensely intermixed regions, whose widths correspond to those created by the damage track of a single implanted ion, as expected from Monte-Carlo simulations. It thus appears that we can directly image intermixing due to single energetic ions implanted into the multilayered GaAs/AlAs structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Cibert, J., Petroff, P.M., Dolan, GJ., Pearton, S.J., Gossard, A.C., and English, J.H.: Appl. Phys. Lett. 49, 1275 (1986)Google Scholar
2 Hirayama, Y., Tarucha, S., Suzuki, Y., Okamoto, H.: Phys. Rev. B 37, 2774 (1988)Google Scholar
3 Bryan, R.P., Coleman, J.J., Miller, L.M., Givens, M.E., Averback, R.S., and Klatt, J.L.: Appl. Phys. Lett. 55, 94 (1989)Google Scholar
4 Cibert, J., Petroff, P.M., Dolan, GJ., Pearton, S.J., Gossard, A.C., and English, J.H.: Appl. Phys. Lett. 49, 223 (1986)Google Scholar
5 Sabu, T., Horikoshi, Y.: Jap. J. Appl. Phys. 27 L2015 (1988)Google Scholar
6 Mei, P., Venkatesan, T., Schwarz, S.A., Stoffel, N.G., Harbison, J.P., Hart, D.L., Florez, L.A.: Appl. Phys. Lett. 52, 1487 (1988)Google Scholar
7 Hirayama, Y.: Jap. J. Appl. Phys. 28, L162 (1989)Google Scholar
8 Ourmazd, A., Taylor, D.W., Cunningham, J., Tu, C.W.: Phys. Rev. Lett 62, 933 (1989)Google Scholar
9 Kim, Y., Ourmazd, A., Bode, M., Feldman, R.D.: Phys. Rev. Lett. 63, 636 (1889)Google Scholar
10 Crank, J.: The mathematics of diffusion (Oxford University Press, London, 1975)Google Scholar
11 Ralston, J., Wicks, G.W., Eastman, L.F., DeCooman, B.C., and Carter, C.B.: J. Appl. Phys. 59, 120 (1986)Google Scholar
12 Biersack, J.P.: Nucí. Instrum. Methods B 19, 32 (1987)Google Scholar