Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-20T01:45:21.370Z Has data issue: false hasContentIssue false

DIRECT OBSERVATION OF INTERFACE TRAPS IN OMVPE-GROWN SELECTIVELY AlGaAs/GaAs HETEROSTRUCTURE USING MODIFIED DLTS

Published online by Cambridge University Press:  28 February 2011

M. TAKIKAWA
Affiliation:
FUJITSU LIMITED, FUJITSU LABORATORIES LTD. 10–1, Morinosato-Wakamiya, Atsugi 243–01, Japan
T. OOHORI
Affiliation:
FUJITSU LIMITED, FUJITSU LABORATORIES LTD. 10–1, Morinosato-Wakamiya, Atsugi 243–01, Japan
K. KASAI
Affiliation:
FUJITSU LIMITED, FUJITSU LABORATORIES LTD. 10–1, Morinosato-Wakamiya, Atsugi 243–01, Japan
J. KOMENO
Affiliation:
FUJITSU LIMITED, FUJITSU LABORATORIES LTD. 10–1, Morinosato-Wakamiya, Atsugi 243–01, Japan
A. SHIBATOMI
Affiliation:
FUJITSU LIMITED, FUJITSU LABORATORIES LTD. 10–1, Morinosato-Wakamiya, Atsugi 243–01, Japan
Get access

Abstract

By using a DLTS technique, we measured the drain current transient from a gate bias pulse for a HEMT. Two negative peaks and one positive peak were observed. From the analysis of the spectra, we found that the positive peak was due to the interface trap. The density of the interface trap was determined from a DLTS fitting procedure. The effect of the interface traps on the electrical properties of the heterostructure are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Mimura, T., Hiyamizu, S., Fujii, T., and Nanbu, K., Jpn. J. Appl. Phys. 19, 381 (1980).Google Scholar
2. Lang, D.V., J. Appl. Phys, 45, 3023 (1974).Google Scholar
3. Takikawa, M. and Ozeki, M., Jpn. J. Appl. Phys. 24, 303 (1985).Google Scholar
4. Valois, A.J. and Robinson, G.Y., IEEE Electron Device Lett. EDL–4, 360 (1983).CrossRefGoogle Scholar
5. Lee, K., Shur, M.S., Drummond, T.J., and Morkoc, H., IEEE Trans. Electron Device ED–30, 207 (1983).Google Scholar
6. Hess, K., Appl. Phys. Lett. 35, 484 (1979).CrossRefGoogle Scholar
7. Lee, K., Shur, M.S., Drummond, T.J., and'H. Morkoc, J. Appl. Phys. 54, 6432 (1983).Google Scholar
8. Lang, D.V. and Logan, R.A., Phys. Rev. Lett. 39, 635 (1977).Google Scholar
9. Lorek, L., Dambkes, H., Heime, K., Ploog, K., and Weimann, G., IEEE Electron Device Lett. EDL–5, 9 (1984).Google Scholar
10. Zhou, B.L., Ploog, K., Gemlin, E., Zheng, X. O., and Shultz, M., Appl. Phys. A28, (1982).Google Scholar
11. Nathan, M.I., Mooney, P.M., Solomon, P.M., and Wright, S.L., Appl. Phys. Lett. 47, 628 (1985).Google Scholar
12. Stern, F. and Howard, W.E., Phys Rev. 163, 816 (1967).Google Scholar