Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-19T09:20:30.248Z Has data issue: false hasContentIssue false

Direct Heteroepitaxial Growth of ZnTe(100) and CdZnTe(100)/ZnTe(100) on Si(100) Substrates by MBE

Published online by Cambridge University Press:  21 February 2011

T. J. de Lyon
Affiliation:
Hughes Research Labs, 3011 Malibu Canyon Rd., Malibu, California 90265
S. M. Johnson
Affiliation:
Santa Barbara Research Center, 75 Coromar Drive, Goleta, California 93117
C. A. Cockrum
Affiliation:
Santa Barbara Research Center, 75 Coromar Drive, Goleta, California 93117
O. K. Wu
Affiliation:
Hughes Research Labs, 3011 Malibu Canyon Rd., Malibu, California 90265
J. A. Roth
Affiliation:
Hughes Research Labs, 3011 Malibu Canyon Rd., Malibu, California 90265
Get access

Abstract

Epitaxial films of ZnTe(100) and CdZnTe(100)/ZnTe(100) have been deposited by molecular-beam epitaxy onto Si(100) substrates misoriented from 0-8 degrees towards the [011] direction. The films were characterized with x ray diffraction, photoluminescence spectroscopy, optical microscopy, and stylus profilometry. Through use of ZnTe buffer layers, single crystal CdZnTe(100) films have been demonstrated on both 4° and 8° misoriented Si with structural quality comparable to that obtained with GaAs/Si composite substrates. X ray rocking curves for ZnTe(400) with FWHM less than 300 arcseconds and for CdZnTe(400) with FWHM less than 160 arcseconds have been obtained for as-grown films. The observed surface morphologies are superior to those obtained on GaAs/Si composite substrates. HgCdTe(100) films with x ray FWHM as low as 55 arcseconds and average etch pit densities of 5 x 106 cm−2 have been deposited by liquid phase epitaxy on these MBE CdZnTe/ZnTe/Si substrates.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tung, T., J. Cryst. Growth 86, 161 (1988). See also Tung, T., DeArmond, L. V., Herald, R. F., Herning, P. E., Kalisher, M. H., Olson, D. A., Risser, R. F., Stevens, A. P., and Tighe, S. J., (Soc. Phot. Opt. Inst. Eng. 1735, Bellingham, WA 1992), in press.Google Scholar
2. Sen, S., Konkel, W. H., Tighe, S. J., Bland, L. G., Sharma, S. R., and Taylor, R. E., J. Cryst. Growth 86, 111 (1988).Google Scholar
3. Kay, R., Bean, R., Zanio, K., Ito, C., and McIntyre, D., Appl. Phys. Lett. 51, 2211 (1987).Google Scholar
4. Johnson, S. M., Ahlgren, W.L., Kalisher, M.H., James, J.B., and Hamilton, W.J. Jr., in Properties of II-VI Semiconductors: Bulk Crystals, Epitaxial Films, Quantum Well Structures, and Dilute Magnetic Systems, Materials Research Society Symposium Proceedings, Vol. 161, edited by Schetzina, J.F., Schaake, H. F., and Bartoli, F. J. Jr., (Materials Research Society, Pittsburgh, PA, 1990), p. 351.Google Scholar
5. Arias, J. M., Zandian, M., Shin, S. H., McLevige, W. V., Pasko, J. G., and DeWames, R. E., J. Vac. Sci. Technol. B 9, 1646 (1991).Google Scholar
6. Korenstein, R., Madison, P., and Hallock, P., J. Vac. Sci. Technol. B 10, 1370 (1992).Google Scholar
7. Sporken, R., Chen, Y. P., Sivananthan, S., Lange, M. D., and Faurie, J. P., J. Vac. Sci. Technol. B 10, 1405 (1992).Google Scholar
8. Lin, M. S., Chou, R. L., and Chou, K. S., J. Cryst. Growth 77, 475 (1986).Google Scholar
9. Wang, W.-S., Ehsani, H., and Bhat, I., 1992 U. S. Workshop on Physics and Chemistry of Mercury Cadmium Telluride and Other IR Materials (October 13-15, 1992, Boston, MA), to be published in J. Electron. Matls.Google Scholar
10. Sporken, R., Sivananthan, S., Mahavadi, K. K., Monfroy, G., Boukerche, M., and Faurie, J. P., Appl. Phys. Lett. 55, 1879 (1989).Google Scholar
11. Grunthaner, P. J., Grunthaner, F. J., Fathauer, R. W., Lin, T. L., Hecht, M. H., Bell, L. D., Kaiser, W. J., Schowengerdt, F. D., Mazur, J. H., Thin Solid Films 183, 197 (1989).Google Scholar
12. Fenner, D. B., Biegelsen, D. K., and Bringans, R. D., J. Appl. Phys. 66, 419 (1989).CrossRefGoogle Scholar
13. Johnson, S. M., Sen, S., Konkel, W.H., and Kalisher, M. H., J. Vac. Sci. Technol. B 9, 1897 (1991).CrossRefGoogle Scholar
14. Hähnert, I. and Schenk, M., J. Cryst. Growth 101, 251 (1990).Google Scholar
15. Shtrikman, H., Oron, M., Raizman, A., and Cinader, G., J. Electron. Mater. 17, 105 (1988).Google Scholar
16. Sporken, R., Sivananthan, S., Mahavadi, K. K., Monfroy, G., Boukerche, M., and Faurie, J. P., Appl. Phys. Lett. 55, 1879 (1989).Google Scholar
17. Faurie, J. P., Hsu, C., Sivananthan, S., and Chu, X., Surf. Sci. 168, 473 (1986).CrossRefGoogle Scholar
18. Feldman, R. D., Austin, R. F., Bridenbaugh, P. M., Johnson, A. M., Simpson, W. M., Wilson, B. A., and Bonner, C. E., J. Appl. Phys. 64, 1191 (1988).Google Scholar
19. Johnson, S. M., Vigil, J. A., James, J. B., Cockrum, C. A., Konkel, W. H., Kalisher, M. H., Risser, R. F., Tung, T., Hamilton, W. J., Ahlgren, W. L., and Myrosznyk, J. M., 1992 U. S. Workshop on Physics and Chemistry of Mercury Cadmium Telluride and Other IR Materials (October 13-15, 1992, Boston, MA), to be published in J. Electron. Matls.Google Scholar