Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-05T14:30:07.560Z Has data issue: false hasContentIssue false

Direct Focused Ion Beam Writing of Printheads for Pattern Transfer Utilizing Microcontact Printing

Published online by Cambridge University Press:  10 February 2011

David M. Longo
Affiliation:
Department of Materials Science & EngineeringUniversity of Virginia Charlottesville, VA 22904-4745, [email protected]
Robert Hull
Affiliation:
Department of Materials Science & EngineeringUniversity of Virginia Charlottesville, VA 22904-4745, [email protected]
Get access

Abstract

We describe how focused ion beam (FIB) direct write technology may be combined with microcontact printing (μCP) and other pattern transfer techniques to enable nanoscale fabrication of complex patterns over both curved and planar surfaces. Nanoscale printheads are fabricated by direct sputtering or deposition (Pt or SiO2) in the FIB. These printheads are capable of transferring 100 nm features over fields of view up to 1 mm2, onto planar and curved surfaces. We are also investigating the concept of “programmable” printheads by fabrication of individually addressable printhead arrays, coupled with selective desorption of a relevant transfer medium (e.g. hexadecanethiol self-assembled monolayers) by heating or by application of an electric field

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Orloff, J., Rev. Sci. Instrnm., 64, 1105 (1993).Google Scholar
2 Dunn, D.N. and Hull, R., Appl. Phys. Left., 75, 3414 (1999).Google Scholar
3 Matsui, S. and Ochiai, Y., Nanotechnology, 7, 247 (1996).Google Scholar
4 Gamo, K., Nucl. Instr. and Meth. in Phys. Res. B, 121, 464 (1997).Google Scholar
5 Iliadis, A.A., Andronescu, S.N., Yang, W., Vispute, R.D., Stanishevsky, A., Orloff, J.H., Sharma, R.P., Venkatesan, T., Wood, M.C., and Jones, K.A., J. Electronic Mat., 28, 136 (1999).Google Scholar
6 Longo, D.M. and Hull, R., in Proceedings of the 1999 International Semiconductor Device Research Symposium, (University of Virginia, Charlottesville, VA, 1999), pp. 3336.Google Scholar
7 Hull, R. and Longo, D.M., in Proceedings of the Tenth International Workshop on the Physics of Semiconductor Devices, edited by Kumar, Vikram and Agarwal, S.K. (Solid State Physics Laboratory, Delhi, India, 2000), pp. 974981.Google Scholar
8 Tien, J., Xia, Y., and Whitesides, G.M., Thin Films, 24, 227 (1998).Google Scholar
9 Xia, Y. and Whitesides, G.M., Annu. Rev. Mater. Sci., 28, 153 (1998).Google Scholar
10 Biebuyck, H.A., Larsen, N.B., Delamarche, E. and Michel, B., IBM J. Res. Develop., 41, 159 (Jan-Mar 1997).Google Scholar
11 Deng, T., Goetting, L.B., Hu, J., and Whitesides, G.M., Sensors and Actuators, 75, 60 (1999).Google Scholar
12 Goetting, L.B., Deng, T., and Whitesides, G.M., Langmuir, 15(4), 1182 (1999).Google Scholar
13 Xia, Y., Venkateswaran, N., Qin, D., Tien, J., and Whitesides, G.M., Langmuir, 14(2), 363 (1998).Google Scholar
14 Xia, Y., Kim, E., and Whitesides, G.M., J. Electrochem. Soc., 143(3), 1070 (1996).Google Scholar
15 Xia, Y., Kim, E., Mrksich, M., and Whitesides, G.M., Chem. Mater., 8(3), 601 (1996).Google Scholar
16 Wang, D., Thomas, S.G., Wang, K.L., Xia, Y., and Whitesides, G.M., Appl. Phys. Lett., 70(12), 1593 (1996).Google Scholar
17 Xia, Y. and Whitesides, G.M., J. Am. Chem. Soc., 117(11), 3274 (1995).Google Scholar
18 Rogers, J.A., Jackman, R.J., and Whitesides, G.M., Adv. Mater. (Comm.), 9(6), 475 (1997).Google Scholar
19 Xia, Y., Qin, D., and Whitesides, G.M., Adv. Mater., 8(12), 1015 (1996).Google Scholar