Article contents
Direct Colorimetric Detection of Virus by a Polymerized Bilayer Assembly
Published online by Cambridge University Press: 15 February 2011
Abstract
Screening and detecting virus by receptor-ligand interactions presents an important challenge in medical and environmental diagnostics, and in drug development. We have developed a direct colorimetric detection method based on a polymeric bilayer assembly. The bilayer is composed of a self-assembled monolayer of octadecyl siloxane and a Langmuir-Blodgett layer of polydiacetylene. The polydiacetylene layer is functionalized with receptor-specific ligands such as analogs of sialic acid. The ligand serves as a molecular recognition element, while the conjugated polymer backbone signals binding at the surface by a chromatic transition. The color transition is readily visible to the naked eye as a blue to red color change and can be quantified by visible absorption spectroscopy. The color transition can be inhibited by the presence of soluble inhibitors. Raman spectroscopic analysis shows that the color transition may arise from binding induced strain on the material resulting in bond elongation and conjugation length reduction.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1994
References
1 For a review see: Bloor, D., Chance, R.R., in Polydiacetylenes, NATO ASI Series E. Applied Sciences, (Martinus Nijhoff Publishers, 1985).Google Scholar
2 Cantow, H.J. in Advances in Polymer Science: Polydiacetylenes, 63, (Sspringer-Verlag, Berlin, 1984).CrossRefGoogle Scholar
3 Chance, R.R., Patel, G.N., Witt, J.D., J. Chem. Phys., 71, 206, (1979)CrossRefGoogle Scholar
4 Nallicheri, R.A., Rubner, M.F., Macromolecules, 24, 517, (1991).CrossRefGoogle Scholar
5 Chance, R.R., Macromolecules, 13, 396, (1980).Google Scholar
6 Mino, N., Tamura, H., Ogawa, K., Langmuir, 8, 594, (1992).CrossRefGoogle Scholar
7 Charych, D.H., Nagy, J.O., Spevak, W., Bednarski, M.D., Science, 261, 585, (1993)Google Scholar
8 Day, D., Ringsdorf, H., J. Polym. Sci., Polym. Lett. Ed., 16, 205, (1978).CrossRefGoogle Scholar
9 Spevak, W., Nagy, J.O., Charych, D.H., et al., J. Am. Chem. Soc., 115, 1146, (1993).CrossRefGoogle Scholar
10 Briggs, D., Seah, M.P., in Practical Surface Analysis. 2nd ed., (Wiley and Sons, Chichester, U.K., 1990).Google Scholar
11 Slaughter, J.M., Weber, W., Guntherodt, G., Falco, C.M., Materials Research Society Bulletin, 39, (1992)Google Scholar
12 Mino, N., Tamura, H., Ogawa, K., Langmuir, 7, 2336, (1991).CrossRefGoogle Scholar
13 Wenzel, M., Atkinson, G.H., J. Am. Chem. Soc., 111, 6123, (1989).CrossRefGoogle Scholar
14 Lieser, G., Tieke, B., Wegner, G., Thin Solid Films, 68, 77, (1980).Google Scholar
15 Fischetti, R.F., Filipkowski, M., Garity, A.F., Blaise, J.K., Phys. Rev. B., 37, 4714, (1988).CrossRefGoogle Scholar
16 Pritchett, T.J., Brossmer, R., Rose, U., Paulson, J.C., Virology, 160, 502, (1987).CrossRefGoogle Scholar
17 Sauter, N.K., et al., Biochemistry, 28, 8388, (1989).CrossRefGoogle Scholar
18 Batchelder, D.N., Bloor, D., in Advances in Infrared and Raman Spectroscopy, volume 11, Clark, R.J.H., Hester, R.E., eds., (Wiley, Heyden, 1984).Google Scholar
19 Mitra, V.K., Risen, W.M. Jr., Baughman, R.H., J. Chem. Phys., 66, 2731, (1977).Google Scholar
- 3
- Cited by