Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T17:58:03.106Z Has data issue: false hasContentIssue false

Direct Characterization of Transport Parameters in Near-Field and Engineered Backfill/Invert Materials

Published online by Cambridge University Press:  03 September 2012

J. L. Conca
Affiliation:
UFA Ventures, Inc., 2000 Logston Blvd, Richland WA 99352http://ufa.owt.com
B. A. Robinson
Affiliation:
Box 1663, Los Alamos National Laboratory, Los Alamos, NM 87545
I. R. Triay
Affiliation:
Box 1663, Los Alamos National Laboratory, Los Alamos, NM 87545
G. Y. Bussod
Affiliation:
Box 1663, Los Alamos National Laboratory, Los Alamos, NM 87545
Get access

Abstract

Performance assessment of a potential repository at Yucca Mountain includes flow and transport modeling of the unsaturated zone as the critical predictive component, and involves a series of model calculations that provide predictions of the migration of important radionuclides in the inventory to the water table. The modeling requires the relevant properties of both the natural environment and the engineered systems. The Unsaturated Flow Apparatus, UFA, was used to directly measure the unsaturated and saturated transport properties of whole rock tuff cores and candidate barrier materials to provide real input parameters to the models. These properties included hydraulic conductivity, matric potential, air permeability, and diffusion coefficient, all of which are strong functions of the volumetric water content. Results show that for all recharges above 0.1 mm/yr, fractures will be partially saturated and conducting at that recharge rate. Whenever the thermal conditions relax enough to allow rewetting of the host rock, there will be dripping from the drift ceiling. Unsaturated transport of colloids through fractured cores of Topopah Spring and Prow Pass tuffs was also investigated and found to depend primarily upon colloid charge, and not size, for the rock cores investigated.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Robinson, B. A., Wolfsberg, A. V., Zyvoloski, G. A., and Gable, C. W., Modeling of Flow, Radionuclide Migration, and Environmental Isotope Distributions at Yucca Mountain, YMP Milestone Report 3468, Los Alamos National Laboratory, Los Alamos, NM, 1996.Google Scholar
2. Conca, J. L. and Wright, J. V., Applied Hydrogeology 1, p. 5 (1992).10.1007/PL00010963Google Scholar
3. Nimmo, J. R., Rubin, J., and Hammermeister, D. P. Water Resour. Res. 23, p. 124 (1987).10.1029/WR023i001p00124Google Scholar
4. Conca, J. L. and Wright, J. V., Water Resources Research 26, p. 1055 (1990).10.1029/WR026i005p01055Google Scholar
5. Wright, J. V., Conca, J. L., and Chen, X., Hydrostratigraphy and Recharge Distributions f rom Direct Measurements of Hydraulic Conductivity Using the UFA™ Method, Technical Report PNL-9424, Pacific Northwest Laboratory, Richland, WA, 1994, 150 p.Google Scholar
6. Nimmo, J. R. and Akstin, K.C., Soil Science Society of America Journal 52, p. 303 (1988).10.2136/sssaj1988.03615995005200020001xGoogle Scholar
7. Conca, J. L., Measurement of Unsaturated Hydraulic Conductivity and Chemical Transport in Yucca Mountain Tuff, Technical Report LA-12596-MS, Los Alamos National Laboratory, Los Alamos, NM, 1993, 28 p.Google Scholar
8. Conca, J. L., Apted, M. J. and Arthur, R. C. in Scientific Basis for Nuclear Waste Management XVI, edited by Interrante, C. G. and Pabalan, R. T. (Materials Research Society Symposium Proceedings 294, Pittsburgh, PA 1993), p. 395402.Google Scholar
9. Conca, J. L. in Proceedings of the First International High-Level Radioactive Waste Management Conference (American Nuclear Society Symposium Proceedings, La Grange Park, IL 1990), 1, p. 394401.Google Scholar
10. Kaplan, D. I., Bertsch, P. M., and Adriano, D. C., Ground Water 33, p. 708 (1995).10.1111/j.1745-6584.1995.tb00016.xGoogle Scholar
11. Buffle, J. and van Leeuwen, H. P. in Environmental Analytical and Physical Chemistry Series; Environmental Particles, Lewis Publishers, Boca Raton, 1993, 2, pp. 247315.Google Scholar
12. Wan, J. and Wilson, J. L., Water Resources Research 30, p. 857 (1994).10.1029/93WR03017Google Scholar
13. McGraw, M. A., The Effect of Colloid Size, Colloid Hydrophobicity and Matrix Saturation on Colloid Transport in The Subsurface, PhD. Dissertation, Univ. of California, Berkeley, 1996.Google Scholar
14. Lackowicz, J. R., Principles of Fluorescence Spectroscopy, Plenum Press, New York, 1983.10.1007/978-1-4615-7658-7Google Scholar
15. Robinson, B. A., Wolfsberg, A. V., Viswanathan, H. S., Gable, C. W., Zyvoloski, G. A. and Turin, H. J. Modeling of Flow, Radionuclide Migration, and Environmental Isotope Distributions at Yucca Mountain, YMP Milestone Report 3672, Los Alamos National Laboratory, Los Alamos, NM, 1997.Google Scholar
16. Triay, I. R., Cotter, C. R., Kraus, S. M., Huddleston, M. H., Chipera, S. J., and Bish, D. L., Radionuclide Sorption in Yucca Mountain Tuffs with J13 Well Water: Neptunium, Uranium, and Plutonium, YMP Milestone Report 3338, Technical Report LA-12956-MS, Los Alamos National Laboratory, Los Alamos, NM, 1996.Google Scholar
17. Triay, I. R., Furiano, A. C., Weaver, S. C., Chipera, S. J., and Bish, D. L., Comparison of Neptunium Sorption Results Using Batch and Column Techniques, YMP Milestone Report 3041, Technical Report LA-12958-MS, Los Alamos National Lab, Los Alamos, NM, 1996.10.2172/273800Google Scholar