Published online by Cambridge University Press: 11 August 2011
We address the issue of decreasing band-gap with increasing atomic number, inherent in semiconducting materials, by introducing a concept we call dimensional reduction. The concept leads to semiconductor compounds containing high atomic number elements and simultaneously exhibiting a large band gap and high mass density suggesting that dimensional reduction can be successfully employed in developing new γ-ray detecting materials. As an example we discuss the compound Cs2Hg6S7 that exhibits a band-gap of 1.65eV and mobility-lifetime products comparable to those of optimized Cd0.9Zn0.1Te.