Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-27T02:28:58.132Z Has data issue: false hasContentIssue false

Diffusivity and Diffusion Mechanism of Oxygen in Silicon

Published online by Cambridge University Press:  28 February 2011

S.-Tong Lee
Affiliation:
Research Laboratories, Eastman Kodak Co., Rochester, NY 14650
D. Nichols
Affiliation:
Research Laboratories, Eastman Kodak Co., Rochester, NY 14650
Get access

Abstract

The diffusivities of oxygen in Czochralski Si (CZ-Si) and float-zone Si (FZ-Si) have been measured by using secondary ion mass spectrometry. The diffusivity at 700–1160°C deduced from the outdiffused profiles of oxygen incorporated in CZ-Si shows little or no dependence on processing conditions and can be expressed as D = 0.14 exp(−2.53 eV/kT) cm2/s. Diffusivity at 700–1100°C of oxygen implanted in FZ-Si is insensitive to doses and follows D = 0.13 exp(−2.50 eV/kT) cm2/s, which agrees remarkably well with CZ-Si data. Since large variations in point-defect concentrations existed under the conditions studied, the excellent agreement among the diffusivities leads to the conclusion that point defects in Si have little effect on oxygen diffusion. This demonstrates that oxygen diffuses primarily via an interstitial mechanism in the temperature range studied.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gosele, U. and Tan, T.Y., in Impurity Diffusion and Getterino in Silicon, eds. Fair, R. B., Pearce, C. W., and Washburn, J. (MRS Symposium, Boston, Nov. 1984), p. 105.Google Scholar
2. Watkins, G.D., Corbett, J.W., and McDonald, R.S., J. Appl. Phys. 53, 7097 (1982).CrossRefGoogle Scholar
3. Stavola, M., Patel, J.R., Kimerling, L.C., and Freeland, P.E., Appl. Phys. Lett. 42, 73 (1983).CrossRefGoogle Scholar
4. Heck, D., Tressler, R.E., and Monkowski, J., J. Appl. Phys. 54, 5739 (1983).CrossRefGoogle Scholar
5. Newman, R.C., Tucker, J.H., and Livingston, F.M., J. Phys. C16, L151 (1983).Google Scholar
6. Oates, A.S., Newman, R.C., and Tucker, J.H., in Defects in Semiconductor, ed. by Kimerling, L.C. and Parsey, J.M. Jr. (The Metallurgical Society of AIME, 1984), p. 709.Google Scholar
7. Fair, R.B. and Tsai, J.C.C., J. Electrochem. Soc. 125, 1107 (1977).CrossRefGoogle Scholar
8. Mikkelsen, J.C. Jr., Appl. Phys. Lett. 40, 338 (1982).CrossRefGoogle Scholar
9. Antoniadis, D.A., J. Electrochem. Soc. 129, 1093 (1982).CrossRefGoogle Scholar
10. Antoniadis, D.A., Lin, A. M., and Dutton, R. W., Appl. Phys. Lett. 33, 1030 (1978).CrossRefGoogle Scholar
11. Evidence (refs. 1,12–14) is in favor of self-interstitial supersaturation.Google Scholar
12. Strunk, H., Gosele, U., and Kolbesen, B.O., Appl. Phys. Lett. 34, 530 (1979).CrossRefGoogle Scholar
13. Harris, R.M. and Antoniadis, D.A., Appl. Phys. Lett. 43, 937 (1983).CrossRefGoogle Scholar
14. Fahey, P., Hutton, R.W., and Hu, S.M., Appl. Phys. Lett. 44, 777 (1984).CrossRefGoogle Scholar
15. Leroy, B., J. AppI. Phys. 50, 7996 (1979).CrossRefGoogle Scholar
16. Hofker, W.K., Werner, H.W., Oosthoek, D.P., and deGrefte, H.A.M., Appl. Phys. 2, 265 (1973).CrossRefGoogle Scholar
17. Pennycook, S.J., Narayan, J., and Culbertson, R.J., in Impurity Diffusion and Gettering in Silicon, eds. Fair, R.B., Pearce, C.W., and Washburn, J. (MRS Symposium, Boston, Nov. 1984) p. 151.Google Scholar