No CrossRef data available.
Published online by Cambridge University Press: 12 April 2012
Uncertainty about future energy and water supplies suggests a pressing need to develop efficient technologies for water desalination. Capacitive deionization (CDI), a method that captures ions in the electrical double layer (EDL) of an electrochemical capacitor, is a promising technology that can potentially fulfill those requirements. Similar to supercapacitors, ideal CDI electrodes should have a large electrolyte-accessible specific surface area available for ion adsorption with rapid charging/discharging characteristics. Unlike supercapacitors, CDI electrodes are required to operate in aqueous electrolytes with low ionic concentrations in a non-linear charging regime. To explore this practically and theoretically important regime, we developed robust, electrochemically-compatible carbon nanotube (CNT) carpet electrodes that posses a well-defined and uniform pore structure that is more readily analyzed in comparison to the random and multi-scale pore structure of typical carbon electrodes. The fabricated electrodes were characterized using cyclic voltammetry and potentiostatic charging in aqueous NaCl solutions (no = 20 - 90 mM) using a three electrode setup. Examination of the CV and potentiostatically-measured capacitances were consistent with EDL behavior dictated by the Stern layer. However, some deviations from the expected behavior were observed with increasing salt concentration during potentiostatic testing.