Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-29T07:38:41.372Z Has data issue: false hasContentIssue false

Diffusion Process in LixW3O9F(1≤x≤3)

Published online by Cambridge University Press:  28 February 2011

Michel Menetrier
Affiliation:
Laboratoire de Chimie du Solide du CNRS and Ecole Nationale Supérieure de Chimie et Physique de Bordeaux, 351, cours de la Libération - 33405 Talence Cedex, France
Soon-Ho Chang
Affiliation:
Laboratoire de Chimie du Solide du CNRS and Ecole Nationale Supérieure de Chimie et Physique de Bordeaux, 351, cours de la Libération - 33405 Talence Cedex, France
Kyung-Soo Suh
Affiliation:
Laboratoire de Chimie du Solide du CNRS and Ecole Nationale Supérieure de Chimie et Physique de Bordeaux, 351, cours de la Libération - 33405 Talence Cedex, France
Jean Senegas
Affiliation:
Laboratoire de Chimie du Solide du CNRS and Ecole Nationale Supérieure de Chimie et Physique de Bordeaux, 351, cours de la Libération - 33405 Talence Cedex, France
Jean-Pierre Chaminade
Affiliation:
Laboratoire de Chimie du Solide du CNRS and Ecole Nationale Supérieure de Chimie et Physique de Bordeaux, 351, cours de la Libération - 33405 Talence Cedex, France
Claude Delmas
Affiliation:
Laboratoire de Chimie du Solide du CNRS and Ecole Nationale Supérieure de Chimie et Physique de Bordeaux, 351, cours de la Libération - 33405 Talence Cedex, France
Get access

Abstract

The structure of LiW3O9F is built up of a peculiar stacking of hexagonal tungsten bronze-type layers. Li can be reversibly intercalated in this material, electrochemically or chemically up to the Li3W3O9F composition.

Diffusion coefficients are determined by the Honders method using Li/LiClO4-PC/Lix W3O9F cells which are discharged galvanostatically for given periods of time. This method does not require the knowledge of the Darken factor nor of the material/electrolyte contact area, which are both rather delicate to determine precisely in pratice.

The evolution of D with the intercalation amount exhibits a drastic increase (by three orders of magnitude) from x = 1 to x = 1.15 and a constant and rather high value afterwards. Different sites for the preexisting lithim (x ≤ 1) and the intercalated ones are therefore expected.

7Li NMR spectra have been recorded for various intercalation amounts. For x = 1, two first order quadrupolar signals are observed, corresponding to the sites of the immobile lithium ion. When lithium is intercalated (x = 1.1), another signal is observed, as well as a modification of that of the first lithium, due to intra site mobility. A more important change is observed between x = 1.1 and x = 1.2, which suggests an exchange process. For larger values of x, a single signal is observed, corresponding to mobile Li+ ions.

The sites in which lithium may be intercalated and the diffusion pathways are discussed on the basis of these results.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Moutou, J.M., Vlasse, M., Cervera-Marzal, M., Chaminade, J.P. and Pouchard, M., J. Sol. State Chem., 51, 190 (1984).Google Scholar
2. Chaminade, J.P., Moutou, J.M., Villeneuve, G., Couzi, M., Pouchard, M. and Hagenmuller, P., J. Sol. State Chem., 65, 27 (1986).CrossRefGoogle Scholar
3. Gérand, B., Nowogroki, G. and Figlarz, M., J. Sol. State Chem., 38, 212 (1981).Google Scholar
4. Magneli, A., Acta Scand., 7, 315 (1953).Google Scholar
5. Chang, S.H., Delmas, C., Chaminade, J.P. and Hagenmuller, P., Solid State Ionics, 39, 305 (1990).Google Scholar
6. Mendiboure, A. and Delmas, C., Computers and Chemistry, 11(3), 153 (1987).CrossRefGoogle Scholar
7. Honders, A., Joung, E.W.A., Heeren, A.H. Van, Wit, J.H.W. de and Broers, G.H.J., Solid State Ionics, 9–10, 375 (1983).Google Scholar
8. Honders, A. and Broers, G.H.J., Solid State Ionics,.1, 173 (1985).Google Scholar
9. Honders, A., Kinderen, J.M. der, Heeren, A.H. Van, Wit, J.H.W. de and Broers, G.H.J., Solid State Ionics,.15, 265 (1985).Google Scholar
10. Honders, A., Young, E.W.A., Hintzen, A.J.H., Wit, J.H.W. de and Broers, G.H.J., Solid State lonics,.15, 277 (1985).Google Scholar