No CrossRef data available.
Published online by Cambridge University Press: 15 February 2011
Silicon-On-Insulator (SOI) materials have emerged as a very promising technology for the fabrication of high performance integrated circuits since they offer significant improvement to device performance. Thin silicon layers of good crystalline quality are now widely available on buried oxide layers of various thicknesses with good insulating properties. However, the SOI structure is quite different from that of bulk silicon. This paper will discuss a study of point-defect diffusion and recombination in thin silicon layers during high temperature annealing treatment through the investigation of stacking-fault growth kinetics. The use of capping layers such as nitride, thin thermal oxide and thick deposited oxide outlines the diffusion mechanisms of interstitials in the SOI structure. It also shows that the buried oxide layer is a very good barrier to the diffusion of point defects and that excess silicon interstitials may be reincorporated at the top interface with the thermal oxide through the formation of SiO species. Finally, from the experimental values of the activation energies for the growth and the shrinkage of stacking-faults, the energy of interstitial creation is evaluated to be 2.6 eV, the energy for interstitial migration to be 1.8 eV and the energy of interstitial generation during oxidation to be 0.2 eV.