Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T15:51:04.536Z Has data issue: false hasContentIssue false

Diffusion Of Indigo Molecules Inside The Palygorskite Clay Channels

Published online by Cambridge University Press:  17 June 2011

Catherine Dejoie*
Affiliation:
Institut Néel, (UPR 2940 CNRS), 25 avenue des Martyrs, BP 166, F-38042 Grenoble Cedex 9, France Lawrence Berkeley National Laboratory, Advanced Light Source, 1 Cyclotron Road, Berkeley CA 94720, USA
Pauline Martinetto
Affiliation:
Institut Néel, (UPR 2940 CNRS), 25 avenue des Martyrs, BP 166, F-38042 Grenoble Cedex 9, France
Eric Dooryhée
Affiliation:
Institut Néel, (UPR 2940 CNRS), 25 avenue des Martyrs, BP 166, F-38042 Grenoble Cedex 9, France National Synchrotron Light Source-II, Brookhaven, Upton, NY 11973, USA
Ross Brown
Affiliation:
Institut Pluridisciplinaire de Recherche sur l’Environnement et les Matériaux, CNRS, Hélioparc, 2 avenue Pierre Angot, F-64053 Pau Cedex 9, France
Sylvie Blanc
Affiliation:
Institut Pluridisciplinaire de Recherche sur l’Environnement et les Matériaux, CNRS, Hélioparc, 2 avenue Pierre Angot, F-64053 Pau Cedex 9, France
Patrice Bordat
Affiliation:
Institut Pluridisciplinaire de Recherche sur l’Environnement et les Matériaux, CNRS, Hélioparc, 2 avenue Pierre Angot, F-64053 Pau Cedex 9, France
Pierre Strobel
Affiliation:
Institut Néel, (UPR 2940 CNRS), 25 avenue des Martyrs, BP 166, F-38042 Grenoble Cedex 9, France
Philippe Odier
Affiliation:
Institut Néel, (UPR 2940 CNRS), 25 avenue des Martyrs, BP 166, F-38042 Grenoble Cedex 9, France
Florence Porcher
Affiliation:
Laboratoire de Cristallographie, Résonnance Magnétique et Modélisation, UHP-CNRS, Faculté des Sciences BP 70239, F- 54506 Vandoeuvre-les-Nancy, France Laboratoire Léon Brillouin, CEA-CNRS, F-91191 Gif-sur-Yvette, France
Manuel Sanchez del Rio
Affiliation:
European Synchrotron Radiation Facility - 6 rue Jules Horowitz, F-38000 Grenoble, France
Elsa Van Eslande
Affiliation:
Centre de Recherche et de Restauration des Musées de France, CNRS, Palais du Louvre, Porte des Lions, 14 Quai François Mitterrand F-75001 Paris, France
Philippe Walter
Affiliation:
Centre de Recherche et de Restauration des Musées de France, CNRS, Palais du Louvre, Porte des Lions, 14 Quai François Mitterrand F-75001 Paris, France
Michel Anne
Affiliation:
Institut Néel, (UPR 2940 CNRS), 25 avenue des Martyrs, BP 166, F-38042 Grenoble Cedex 9, France
*
*Corresponding author: [email protected], [email protected]
Get access

Abstract

The search for durable dyes led several past civilizations to develop artificial pigments. Maya Blue (MB), manufactured in pre-Columbian Mesoamerica, is one of the best known examples of an organic-inorganic hybrid material. Its durability is due to the unique association of indigo molecule and palygorskite, a particular fibrous clay occurring in Yucatan. Despite 50 years of sustained interest, the microscopic structure of MB and its relation to the durability remain open questions. Combining new thermogravimetric and synchrotron X-ray diffraction analyses, we show that indigo molecules can diffuse into the channel of the palygorskite during the heating process, replacing zeolitic water and stabilizing the room temperature phases of the clay.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Riederer, J.: Egyptian Blue, in Artists’ pigments, A Handbook of Their History and Characteristics Vol. 3, Ed. FitzHugh, E.W. (National Gallery of Art, Washington, 1997), p 23.Google Scholar
2. FitzHugh, E.W. and Zycherman, L.A.: An early man-made blue pigment from China e barium copper silicate. Stud. Conserv. 28, 15 (1983).Google Scholar
3. FitzHugh, E.W. and Zycherman, L.A.: A purple barium copper silicate pigment from early China. Stud. Conserv. 37, 145 (1992).Google Scholar
4. Liu, Z., Mehta, A., Tamura, N., Pickard, D., Rong, B., Zhou, T. and Pianetta, P.: Influence of Taoism on the invention of the purple pigment used on the Qin terracotta warriors. J. Archaeol. Sci. 34, 1878 (2007).Google Scholar
5. Merwin, H. E: Chemical analysis of pigments, in Temple of the warriors at Chichen-Itza, Yucatán, Eds Morris, E. H., Charlot, J. and Morris, A.A. (Carnegie Institution of Washington, Washington DC, 1931), pp. 355–6.Google Scholar
6. Reyes-Valerio, C.: De Bonampak al Templo Mayor. El azul maya en Mesoamerica, Siglo XXI Editores, (Mexico D.F., 1993), p 157.Google Scholar
7. Van Olphen, H.: Maya blue: a clay-organic pigment? Science. 154, 645 (1966).Google Scholar
8. Gettens, R.J.: An unsolved problem in ancient pigments. Am. Antiq. 7 (4), 557 (1962).Google Scholar
9. Sanchez del Rio, M., Martinetto, P., Reyes-Valerio, C., Dooryhée, E. and Suarez, M.: Synthesis and acid resistance of Maya Blue. Archaeometry. 48, 115 (2006).Google Scholar
10. Gomez-Romero, P. and Sanchez, C.: Hybrid materials. Functional properties. From Maya Blue to 21st century materials. New J. Chem. 29, 57 (2005).Google Scholar
11. Lima, E., Bosch, P., Loera, S., Ibarra, I.A., Laguna, H. and Lara, V.: Non toxic hybrid pigments: sequestration betanidin chhromophores on inorganic matrices. Appl. Clay Sci. 42, 478 (2009).Google Scholar
12. Marangoni, R., Taviot-Guého, C., Illaik, A., Wypych, F. and Leroux, F.: Organic inorganic dye filler for polymer: Blue-coloured layered double hydroxides into polystyrene. J. Colloid Interface Sci. 326, 366 (2008).Google Scholar
13. Zhang, X., Jin, Z., Li, Y., Li, S. and Lu, G.: Photosensitized reduction of water to hydrogen using novel Maya blue-like organic-inorganic hybrid material. J. Colloîd Interface Sci. 333, 285 (2008).Google Scholar
14. Dejoie, C., Martinetto, P., Dooryhee, E., Strobel, P., Blanc, S., Bordat, P., Brown, R., Porcher, F., Sanchez del Rio, M. and Anne, M.: : a new organic-inorganic hybrid pigment, Appl. Mater. Interfaces. 2, 2308 (2010).Google Scholar
15. Dejoie, C., Martinetto, P., Dooryhée, E., Van Elslande, E., Blanc, S., Bordat, P., Brown, R., Porcher, F. and Anne, M.: Association of indigo with zeolites for improved colour stabilization. Appl. Spectrosc. 64, 1131 (2010).Google Scholar
16. Molina-Sabio, M., Caturla, F., Rodriguez-Reinoso, F. and Kharitonova, G.V.: Porous structure of a sepiolite as deduced from the adsorption of N2, CO2, NH3 and H2O. Micropor. Mesopor. Mater. 47, 389 (2001).Google Scholar
17. Ruiz-Hitzky, E.: Molecular access to intracrystalline tunnels of sepiolite. J. Mater. Chem. 11, 86 (2001).Google Scholar
18. Akçay, M.: FT-IR spectroscopic investigation of the adsorption pyridine on the raw sepiolite and Fe-pillared sepiolite from Anatolia. J. Mol. Struct. 694, 21(2004).Google Scholar
19. Kuang, W., Facey, G.A., Detellier, C., Casal, B., Serratosa, J.M. and Ruiz-Hitzky, E.: Nanostructured Hybrid Materials Formed by Sequestration of Pyridine Molecules in the Tunnels of Sepiolite. Chem. Mater. 15, 4956 (2003).Google Scholar
20. Akyuz, S., Akyuz, T. and Yakar, A.E.: FT-IR spectroscopic investigation of adsorption of 3-aminopyridine on sepiolite and montmorillonite from Anatolia. J. Mol. Struct. 565, 487 (2001).Google Scholar
21. Wang, F., Liang, J., Tang, Q., Meng, J., Wu, Z. and Li, G.: Microstructure of sepiolite and its adsorbing properties to dodecanol. Trans. Nonferrous Met. Soc. China. 16, 406 (2006).Google Scholar
22. Kuang, W. and Detellier, C.: Insertion of acetone molecules in the nanostructured tunnels of palygorskite. Can. J. Chem. 82, 1527 (2004).Google Scholar
23. Chiari, G., Giustetto, R. and Ricchiardi, G.: Crystal structure refinements of palygorskite and Maya Blue from molecular modelling and powder synchrotron diffraction. Eur. J. Mineral. 15, 21 (2003).Google Scholar
24. Berke, H.: The invention of blue and purple pigments in ancient times. Chem. Soc. Rev. 36, 15 (2007).Google Scholar
25. Klessinger, M. and Luttke, W.: Theoretische und spektroskopische untersuchungen an indigo-farbstoffe-II. Tetrahedron. 19 (2), 315 (1963).Google Scholar
26. Chiari, G., Giustetto, G., Druzik, R., Doehne, J. and Ricchiardi, E.: Pre-columbian nanotechnology: reconciling the mysteries of the maya blue pigment. Appl. Phys. A. 90, 3 (2008).Google Scholar
27. Kleber, R., Masschelein-Kleiner, R. and Thissen, J.: Etude et identification du Bleu Maya. Stud. Conserv. 12 (2), 41 (1967).Google Scholar
28. Fois, E., Gamba, A. and Tilocca, A.: On the unusual stability of Maya blue paint: molecular dynamics simulations. Micropor. Mesopor. Mater. 57, 263 (2003).Google Scholar
29. Hubbard, B., Kuang, W., Moser, A., Facey, G.A. and Detellier, C.: Structural study of Maya Blue: textural, thermal and solid-state multinuclear magnetic resonance characterization of the palygorskite-indigo and sepiolite-indigo adducts. Clays Clay Miner. 51 (3), 318 (2003).Google Scholar
30. Reinen, D., Kohl, P. and Muller, C.: The nature of the colour centres in “Maya Blue” – the incorporation of organic pigment molecules into the palygorskite lattice. Z. Anorg. Allg. Chem. 630, 97 (2004).Google Scholar
31. Giustetto, R., Levy, D. and Chiari, G.: Crystal structure refinement of Maya Blue pigment prepared with deuterated indigo, using neutron powder diffraction. Eur. J. Mineral. 18, 629 (2006).Google Scholar
32. Domenech, A., Domenech-Carbo, M.T. and Vazquez de Agredos Pascual, M.L.: Dehydroindigo: A New Piece into the Maya Blue Puzzle from the Voltammetry of Microparticles Approach. J. Phys. Chem. B. 110, 6027 (2006).Google Scholar
33. Manciu, F.S., Reza, L., Polette, L.A., Torres, B. and Chianelli, R.R.: Raman and infrared studies of synthetic Maya pigments as a function of heating time and dye concentration. J. Raman Spectrosc. 39, 1257 (2008).Google Scholar
35. Rodriguez-Carvajal, J.: Recent Advances in Magnetic Structure Determination by Neutron Powder Diffraction. Physica B. 192, 55 (1993).Google Scholar
36. Hayashi, H., Otsuka, R. and Imai, N.: Infrared study of sepiolite and palygorskite on heating. Am. Mineral. 53, 1613 (1969).Google Scholar
37. Artioli, G. and Galli, E.: The crystal structures of orthorhombic and monoclinic palygorskite. Mater. Sci. Forum. 166, 647 (1994).Google Scholar
38. Artioli, G., Galli, E., Burattini, E., Cappuccio, G. and Simeoni, S.: Palygorskite from Bolca, Italy: a characterization by high-resolution synchrotron radiation powder diffraction and computer modelling. N. Jb. Miner. Mh. 5, 217 (1994).Google Scholar
39. Giustetto, R., Llabres I Xamena, F.X., Ricchiardi, G., Bordiga, S., Damin, A., Gobetto, R. and Chierotti, M.R.: Maya Blue: a computational and spectroscopic study. J. Phys. Chem. B. 109, 19360 (2005).Google Scholar
40. Post, J.E. and Heaney, P.J.: Synchrotron powder X-ray diffraction study of the structure and dehydration behaviour of palygorskite. Am. Mineral. 93, 667 (2008).Google Scholar
41. Preisinger, A.: Sepiolite and related compounds: its stability and applications. Clays Clay Miner. 10, 365 (1963).Google Scholar
42. Ovarlez, S., Giulieri, F., Chaze, A.M., Delamare, F., Raya, J. and Hirschinger, J.: The incorporation of indigo molecules in sepiolite tunnels. Chem. Eur. J. 15, 11326 (2009).Google Scholar