Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T09:39:03.271Z Has data issue: false hasContentIssue false

Diffusion of Ga Vacancies and Si in GaAs

Published online by Cambridge University Press:  25 February 2011

K.B. Kahen
Affiliation:
Corporate Research Laboratories, Eastman Kodak Company, Rochester, NY 14650-2011
D.J. Lawrence
Affiliation:
Corporate Research Laboratories, Eastman Kodak Company, Rochester, NY 14650-2011
D.L. Peterson
Affiliation:
Corporate Research Laboratories, Eastman Kodak Company, Rochester, NY 14650-2011
G. Rajeswaran
Affiliation:
Corporate Research Laboratories, Eastman Kodak Company, Rochester, NY 14650-2011
Get access

Abstract

Using the Si-pair diffusion formalism of Greiner and Gibbons, a new Si diffusion model is developed based on the dominant diffusion species being SiGa+ - VGa- pairs, where VGa is the Ga vacancy. In the model, the unknown parameters are the pair diffusion coefficient (Dp) and the equilibrium constant, which are fitted to the experimental data. Dp is also derived to be equal to one-half the Ga vacancy diffusivity. To verify this relation, an experiment to determine the VGa diffusivity, Dv, is performed. A relation for Dv of the form 0.962 exp(-2.72 eV/kT) cm2/s is obtained, and it is shown that the fitted Dp values are indeed approximately equal to 0.5 Dv.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Greiner, M.E. and Gibbons, J.F., J. Appl. Phys. 57, 5181 (1985).Google Scholar
2 Kavanagh, K.L., Mayer, J.W., Magee, C.W., Sheets, J., Tong, J., Woodall, J.M., Appl. Phys. Lett. 47, 1208 (1985).Google Scholar
3 Guido, L.J., Holonyak, N. Jr., Hsieh, K.C., Kaliski, R.W., Piano, W.E., Burnham, R.D., Thornton, R.L., Epler, J.E., Paoli, T.L., J. Appl. Phys. 61, 1372 (1987).Google Scholar
4 Chen, R.T. and Spitzer, W.G., J. Electron. Mater. 10, 1085 (1981).Google Scholar
5 Walukiewicz, W., Appl. Phys. Lett. 54, 2094 (1989).Google Scholar
6 Reiss, H., Fuller, C.S., Morin, F.J., Bell Syst. Tech. J. 25, 535 (1956).Google Scholar
7 Kahen, K.B., J. Appl. Phys., December 1989.Google Scholar
8 Kahen, K.B., Appl. Phys. Lett. 53, 2071 (1988).Google Scholar
9 Schlesinger, T.E. and Kuech, T., Appl. Phys. Lett. 49, 519 (1986).Google Scholar
10 Kahen, K.B., Peterson, D.L., Rajeswaran, G., Lawrence, D.J., Appl. Phys. Lett. 55, 651 (1989).Google Scholar