Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T15:25:24.781Z Has data issue: false hasContentIssue false

Diffusion Modeling of the Redistribution of Ion Implanted Impurities

Published online by Cambridge University Press:  26 February 2011

Alwin E. Michel*
Affiliation:
IBM Research Center,Yorktown Heights, New York 10598
Get access

Abstract

Transient enhanced diffusion during rapid thermal processing has been reported for most of the common dopants employed for silicon device fabrication. For arsenic a large amount of the available data is fit by a computational model based on accepted diffusion mechanisms. Ion implanted boron on the other hand exhibits anomalous tails and transient motiou. A time dependence of this displacement is demonstrated at lower temperatures. High temperature rapid anneals are shown to reduce some of the anomalous motion observed for low temperature furnace anneals. A model is described that links the electrical activation with the diffusion and describes both the transient diffusion of rapid thermal processing and the large anomalous diffusion reported many years ago for furnace anneals.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sedgwick, T.O., J. Electrochem. Soc. 130 484 (1983)CrossRefGoogle Scholar
2. Hodgson, R.T., Baglin, J.E.E., Michel, A.E., Mader, S.M. and Gelpey, J.C., Mat. Res. Soc. Proc. 13 355 (1983)CrossRefGoogle Scholar
3. Hodgson, R.T., Deline, V., Mader, S.M., Morehead, F.F., and Gelpey, J.C., Mat. Res. Soc. Symp. Proc., 23, 253 (1984)Google Scholar
4. Kalish, R., Segdwick, T.O., and Mader, S.M.. Appl. Phys. Lett. 44, 107 (1984)Google Scholar
5. Pennycook, S.J., Narayan, J., and Holland, O.W., Jour Electrochem. Soc. 132 1962 (1985)Google Scholar
6. Seidel, T.E., Pai, C.S., Lischner, D.J., Maher, D.M., Knoell, R.V., Williams, J.S., Penumalli, B.R., and Jacobson, D.C., Nuclear Instruments and Methods in Phys. Res. B7/8 251 (1985)Google Scholar
7. Tsai, M, Morehead, F., Baglin, J., and Michel, A., J. Appl. Phys. 51, 3230 (1980)Google Scholar
8. Sedgwick, T., Michel, A., Cohen, S., Deline, V., and Oehrlein, G., Appl. Phys. Lett 47, 848 (1985)Google Scholar
9. Deline, V.R., Kastl, R.H., And Michel, A.R., Program Am. Vac. Soc. December (1984)Google Scholar
10. Hodgson, R., Deline, V., Mader, S., Morehead, F., and Gelpey, J., Mat. Res. Soc. Proc. 23, 253 (1984)Google Scholar
11. Fair, R.B., Mat. Res. Soc. Symp. Proc. 35, 381 (1985)Google Scholar
12. Calder, I.D., Naguib, H.M., Houghton, d., and Shepherd, F.R., Mat. Res. Soc. Symp. Proc. 35,354 (1985)Google Scholar
13. Sedgwick, T.O., Presented at Symposium on “Reduced Temperature Processing for VLSI” Fall Meeting of the Electrochemical Society, Las Vegas, Nevada, Oct. 13–18, 1985 Google Scholar
14. Michel, A., Rausch, W., Ronscheim, P., and Kastl, R., to be publishedGoogle Scholar
15. Rysel, H., Muller, K., Haberger, K., Henkelmann, R., and Jahnel, F., Appl. Phys. 22, 35 (1980)Google Scholar
16. Hofker, W., Werner, H., Osthoek, D., and deGrefte, H., Appl. Phys. 2 265 (1973)Google Scholar
17. Morehead, F. and Hodgson, R., Mat. Res. Soc. Symp. Proc., 35, 342 (1985)Google Scholar
18. Seidel, T. and MacRae, A., Radiation Effects 73, 1 (1971).Google Scholar
19. Fink, D., Biersack, J., Carstanjen, H., Jahnel, F., Muller, K., Ryssel, H., and Osei, A., Radiation Effects 77, 11 (1983)Google Scholar