Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T15:24:25.923Z Has data issue: false hasContentIssue false

Diffusion Limited Aggregation of PMMA Stereocomplex in Thin Films

Published online by Cambridge University Press:  17 March 2011

Yves Grohens
Affiliation:
Laboratoire Polymères et Procédés, Université de Bretagne Sud, Centre de Recherche, rue St Maudé, BP 92116, 56321 Lorient Cedex, France
Gilles Castelein
Affiliation:
Institut de Chimie des Surfaces et Interfaces-CNRS, 15, rue J. Starcky, BP 2488, 68057, Mulhouse Cedex, France
Pascal Carriere
Affiliation:
Institut de Chimie des Surfaces et Interfaces-CNRS, 15, rue J. Starcky, BP 2488, 68057, Mulhouse Cedex, France
Jiri Spevacek
Affiliation:
Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, 16206 Prague 6, Czech Republic
Get access

Abstract

The nanoscale patterns formed by poly(methyl methacrylate) (PMMA) stereocomplexes at the surface of silicon wafers, glass and mica, were investigated by tapping mode atomic force microscopy (TM-AFM). The effects of the solvent nature, PMMA concentration, i/s-ratio (stoechimetry) and surface nature on the morphology of the stereocomplex thin layer at a surface were addressed. The aggregation phenomena are well described by the diffusion limited cluster-cluster aggregation model (DLA) and the fractal exponent D calculated. The i/s-ratio strongly influences the fractal exponent D which is equal to 1.35 for the 1:2 ratio is lower than for the other i:s ratios which are 1.46, 1.61, 1.82 for 1:1, 2:1 and 4:1 ratios, respectively. The low values of the fractal dimension D are indicative of a fast aggregation process and higher values of D correspond to a slow aggregation process.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Liu, Y.; Zhao, W.; Zheng, X.; King, A.; Sing, A.; Rafailovich, H.; Sokolov, J.; Dai, K.H.; Kramer, E.J.; Schwarz, S.A.; Gebizlioglu, O.; Sinha, S.K. Macromolecules 27, 4000 (1994)Google Scholar
2 Reiter, G.; Castelein, G.; Hoerner, P.; Riess, G.; Blumen, A.; Sommer, J.U. Phys. Rev. Lett. 83, 3844. (1999)Google Scholar
3 Van der Wielen, M.W.J.; Cohen Stuart, M.A.; Fleer, G.J.; de Boer, D.K.G.; Leenaers, A.J.G.; Nieuwhof, R.P.; Marcelis, A.T.M.; Sudholter, E.J.R. Langmuir 13, 4762 (1997)Google Scholar
4 Binder, K. Adv. Polym. Sci. 138, 1 (1999)Google Scholar
5 Barrat, A.; Silberzan, P.; Bourdieu, L.; Chatenay, D. Europys. Lett. 20, 633 (1992)Google Scholar
6 Serizawa, T.; Hamada, K.I.; Kitayama, T.; Fujimoto, N.; Hatada, K.; Akashi, M. J. Am. Chem. Soc. 122, 1891, (2000)Google Scholar
7 Grohens, Y., Castelein, G., Carriere, P., Spevacek, J., Schultz, J., Langmuir 17, 86 (2001)Google Scholar
8 Spevacek, J.; Schneider, B. Colloid Polym. Sci. 258, 621 (1980)Google Scholar
9 Bosscher, F.; ten Brinke, G.; Challa, G. Macromolecules 15, 1442 (1982)Google Scholar
10 Berghmans, M.; Thijs, S.; Cornette, M.; Berghmans, H.; De Schryver, F.C.; Moldenaers, P.; Mewis, J. Macromolecules 27, 7669 (1994)Google Scholar
11 Matsushita, M. in “The fractal approach to heterogeneous chemistry”, ed. Avnir, David, John Wiley and Sons Ltd., (1989)Google Scholar
12 Von Schulthess, G.K.; Benedek, G.B.; De Blois, R.W. Macromolecules 13, 939 (1980)Google Scholar
13 Witten, T.A.; Sander, L.M. Physical Rev. Lett. 47, 1400 (1981)Google Scholar
14 Spevacek, J.; Schneider, R. Adv. Colloid Interface Sci. 27, 81 (1987)Google Scholar