Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T16:32:21.981Z Has data issue: false hasContentIssue false

Diffusion in Metals and Intermetallic Compounds: The Impact of AB-INITIO Calculations

Published online by Cambridge University Press:  10 February 2011

M. Fähnle
Affiliation:
Max-Planck-Institut für Metallforschung, Heisenbergstr. 1, D 70569 Stuttgart, Germany, [email protected]
B. Meyer
Affiliation:
Max-Planck-Institut für Metallforschung, Heisenbergstr. 1, D 70569 Stuttgart, Germany
J. Mayer
Affiliation:
Max-Planck-Institut für Metallforschung, Heisenbergstr. 1, D 70569 Stuttgart, Germany
J.S. Oehrens
Affiliation:
Max-Planck-Institut für Metallforschung, Heisenbergstr. 1, D 70569 Stuttgart, Germany
G. Bester
Affiliation:
Max-Planck-Institut für Metallforschung, Heisenbergstr. 1, D 70569 Stuttgart, Germany
Get access

Abstract

By means of statistical mechanics the relations between the effective formation energies, entropies and volumes of atomic defects in ordered compounds which may be obtained experimentally and the parameters characterizing the microscopic properties of the single defects are derived, and the microscopic parameters are determined by the ab-initio electron theory. In a second step, the migration energies for possible self-diffusion paths are calculated by the transition-state theory in combination with the ab-initio electron theory. Results are reported for B2-FeAl and for Fe3Al, Ni3Sb and Fe3Si with D03 structure, and the impact of the calculations on the interpretation of experimental data is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Vineyard, G.H., J. Phys. Chem. Solids 3 121 (1957).Google Scholar
2 Vogl, G., Hyperfine Interactions 53 197 (1990).Google Scholar
3 Frank, W., Breier, U., Elsässer, C., and Fähnle, M., Phys. Rev. Lett. 77 518 (1996).Google Scholar
4 Wasilewski, R.J., J. Phys. Chem. Solids 29 39 (1968).Google Scholar
5 Elcock, E.W. and McCombie, C.W., Phys. Rev. 109 605 (1958).Google Scholar
6 Kao, C.R., Kim, S. and Chang, Y.A., Mat. Sci. Eng. A 192/193, 695 (1995).Google Scholar
7 Stolwijk, N.A., Gend, M. van and Bakker, H., Phil. Mag. A 42 783 (1980).Google Scholar
8 Schultz, P.A. and Davenport, J.W., J. Alloys and Compounds 197 229 (1993).Google Scholar
9 Hagen, M. and Finnis, M.W., Phil. Mag. A 77, 447 (1998).Google Scholar
10 Ludwig, M. and Gumbsch, P., Modelling Simul. Mater. Sci. Eng. 3 533 (1995).Google Scholar
11 Mishin, Y. and Farkas, D., Defects and Diffusion Forum 143–147 303 (1997).Google Scholar
12 Besson, R. and Morillo, J., Phys. Rev. B 55 193 (1997).Google Scholar
13 Mayer, J. and Fähnle, M., Acta Materialia 45 2207 (1997).Google Scholar
14 Foiles, S.M. and Daw, M.S., J. Mater. Res. 2 5 (1987).Google Scholar
15 Fu, C.L., Ye, Y.Y., Yoo, M.H., and Ho, K.M., Phys. Rev. B 48 6712 (1993).Google Scholar
16 Mayer, J., Elsässer, C., and Fähnle, M., phys. stat. sol. B 191 283 (1995).Google Scholar
17 Schott, V. and Fähnle, M., phys. stat. sol B 204 617 (1997).Google Scholar
18 Mayer, J., Meyer, B., Oehrens, J.S., Bester, G., Börnsen, N., and Fähnle, M., Intermetallics 5, 597 (1997).Google Scholar
19 Bester, G., Meyer, B., and Fähnle, M., Phys. Rev. B, in press.Google Scholar
20 Mayer, J. and Fähnle, M., Defects and Diffusion Forum 143–147 2850 (1997).Google Scholar
21 Fähnle, M., Bester, G., and Meyer, B., Scripta Materialia, in press.Google Scholar
22 Breier, U., Frank, W., Elsässer, C., Fiihnle, M., and Seeger, A., Phys. Rev. B 50 5928 (1994).Google Scholar
23 Kohn, W. and Sham, L.J., Phys. Rev. A 140 1133 (1965).Google Scholar
24 Vanderbilt, D., Phys. Rev. B 32 8412 (1985).Google Scholar
25 Louie, S.G., Ho, K.M., and Cohen, M.L., Phys. Rev. B 19 1774 (1979); C. Elsässer, N. Takeuchi, K.M. Ho, C.T. Chan, P. Braun and M. F~hnle, J. Phys.: Condens. Matter 2 4371 (1990).Google Scholar
26 Meyer, B., Elsäisser, C., and Fähnle, M., to be published.Google Scholar
27 Gu, Y. M. and Fritsche, L., J. Phys.: Condens. Matter 4 1905 (1992).Google Scholar
28 Breier, U., Schott, V., and Fähnle, M., Phys. Rev. B 55 5772 (1997).Google Scholar
29 Feinauer, A., doctor thesis, University of Stuttgart, 1993, p. 68.Google Scholar
30 Neumann, M., Scharwaechter, P., Seeger, A., Frank, W., Freitag, K., Konuma, M., and Majer, C., Defect and Diffusion Forum 143–147 85 (1997).Google Scholar
31 Furthmüller, J. and Finnis, M.W., unpublished.Google Scholar
32 Schaefer, H.-E., Gugelmeier, R., Scholx, M., and Seeger, A., Mater. Sci. Forum 15–18, 111 (1987).Google Scholar
33 Meyer, B. and Fähnle, M., Phys. Rev. B 56 13595 (1997).Google Scholar
34 Ziegler, R. and Schaefer, H.-E., Mater. Sci. Forum 15–18 145 (1987).Google Scholar
35 Fu, C.L., Phys. Rev. B 52 3151 (1995).Google Scholar
36 Würschum, R., Grupp, C. and Schaefer, H.-E., Phys. Rev. Lett. 75 97 (1995).Google Scholar
37 Wolff, J., Franz, M., Broska, A. and Hehenkamp, Th., Defect and Diffusion Forum 143–147, 239 (1997).Google Scholar
38 Vogl, G. and Sepiol, B., Acta Metall. Mater 42 3175 (1994); R. Feldwisch, B. Sepiol and G. Vogl, Acta Metall. 43 2033 (1995).Google Scholar
39 Eggersmann, M., Sepiol, B., Vogl, G. and Mehrer, H., Defect and Diffusion Forum 143–147, 339 (1997).Google Scholar
40 Rivière, J.P. and Grilhé, J., phys. stat. sol. A 25 429 (1974).Google Scholar
41 Gumbsch, P., private communication.Google Scholar
42 Mehrer, H., Eggersmann, M., Gude, A., Salamon, M. and Sepiol, B., Materials Science and Engineering A 239–240 889 (1997).Google Scholar
43 Mayer, J. and FHhnle, M., Scripta Materialia 37 131 (1997).Google Scholar
44 Eggersmann, M. and Mehrer, H., private communication.Google Scholar
45 Jirásková, Y., Schneeweiss, O., Šob, M., and Novotný, I., Acta Materialia 45 2147 (1997).Google Scholar
46 Schaefer, H.-E., Würschum, R., Šob, M., Žák, T., Yu, W.Z., Eckert, W. and Banhart, F., Phys. Rev. B 41 11869 (1990).Google Scholar
47 Vogl, G., Defects and Diffusion Forum 143–147 223 (1997).Google Scholar
48 Heumann, Th. and Stiier, H., phys. stat. sol. 15 95 (1966).Google Scholar
49 Randl, O.G., Vogl, G., Kaisermayr, M., Bührer, W., Pannetier, J. and Petry, W., J. Phys.: Condens. Matter 8 7689 (1996).Google Scholar
50 Vogl, G., Kaisermayr, M. and Randl, O.G., J. Phys.: Condens. Matter 8 4727 (1996).Google Scholar
51 Bester, G., Meyer, B. and Fähnle, F., Phys. Rev. B, in press.Google Scholar
52 Cude, A. and Mehrer, H., Phil. Mag. A 76 1 (1997).Google Scholar
53 Kümmerle, E.A., Badura, K., Sepiol, B., Mehrer, H. and Schaefer, H.-E., Phys. Rev. B 52, R 6947 (1995).Google Scholar